Learning From Data:
MLE

Maximum Likelihood Estimators

Parameter Estimation

Common approach in statistics: use a
parametric model of data:

Assume data set:

Bin(n,p), Poisson()\), N(u,o?)
exp(A) Uniform(a,b)

But parameters are unknown!!! Need to estimate
them.

Parameter Estimation

* Assuming sample xi, X, ..., Xn is from a
parametric distribution f(x| &), estimate 6.

*E.g.: Given sample HHTTTTTHTHTTTHH
of (possibly biased) coin flips, estimate

. 6 = probability of Heads

f(x| €) is the Bernoulli probability mass function with parameter &

Likelihood

*P(x | 0): Probability of event x given model 6

* Viewed as a function of x (fixed ), it’s a probability
“Eg. 5P| 0) =1

* Viewed as a function of 0 (fixed x), it’s a likelihood

*E.g, 2 6 P(x | 8) can be anything; relative values of interest.

E.g., if 8 = prob of heads in a sequence of coin flips then
P(HHTHH | .6) > P(HHTHH | .5),

l.e., event HHTHH is more likely when 6 = .6 than 6 =.5

*And what 6 make HHTHH most likely?

Likelihood Function

®P(HHTHH | 6 ):
Probability of HHTHH, g

given P(H) = 6:
) 041-6) B
0.2 0.0013 g 3
0.5 0.0313 : o
0.8 0.0819 i
0.95 0.0407 H T

Maximum Likelihood
Parameter Estimation

* One (of many) approaches to param. est.

* Likelihood of (indp) observations Xy Xop ooy X
n

L(Il,(l/‘z,...,xn | 0) :Hf(m'b | 0)
i=1

* As a function of 6, what 6 maximizes the
likelihood of the data actually observed

* Typical approach: %L(f\a):o or a%logL(fw):o

6

12/1/16



Example |

*n coin flips, xi, Xz, ..., Xn; no tails, n; heads, no+n; =n;
O = probability of heads

Example |

*n coin flips, xi, Xz, ..., Xn; no tails, n; heads, no+n; =n;
O = probability of heads AN

o005

L(z1,22,...,2, |0) = (1 —6)m0o™
log L(xy,22,...,2n | 0) = mnglog(l—0)+nqlogd
% log L(x1, @2, ..., x5 | 0) = T2+ 5

Observed fraction of
successes in sample is
ny MLE of success
" probability in population

Setting to zero and solving:

(Also verify it's max, not min, & not better on boundary)

Parameter Estimation

* Assuming sample xi, X, ..., Xn is from a
parametric distribution f(x| &), estimate 6.

*E.g.: Given n normal samples,
estimate mean & variance

flz) = —Aoe@-w¥/@e)

2mo?

0 = (n,0%

Ex2: | got data; a little birdie tells me
it's normal, and promises 02 = |

Observed Data

X —

Which is more likely: (a) this?

M unknown, 02= |

x XXX X XKHX x

f Observed Data

Which is more likely: (b) or this?

M unknown, 02 = |

x X XXX X

Observed Data f
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Which is more likely: (c) or this?

K unknown, 02 = |

X XXX XXX X

Observl!d Data
n

Which is more likely: (c) or_this?
M unknown, 02 = |

Looks good by eye, but how do | optimize my estimate of . ?

X XXX XXX X

Observl}d Data
M

Ex. 2: .~ N(p,0?), 0* =1, punknown

1 2 /e
L(z1,x2,...,2,]0) = H — e~ (@i=0)*/2
125en V2T

Ex. 2: zi~ N(p,0?), 6% =1, punknown

1 y
L(x1,2a,...,2,]0) = e~ @02

1<i<n V 2m
1 x; — )2
InL(z1,22,...,2,|0) = Z _§1ngﬂ_(lT)
1<i<n
df‘élnL(m,xz,“.,mn\&) = (x; —0)
1<i<n
And verify it's max, not -~ _
min & not better on - (Zliisn xl) —nd =0

boundaﬂl};n

<
|

‘ ) = (Z1gign 11) /n =2
Sample mean is MLE of
population mean

D

Hmm ..., density # probability

So why is “likelihood” function equal to
product of densities??

a) for maximizing likelihood, we really only
care about relative likelihoods, and density
captures that

and/or

b) if density at x is f{x), for any small § >0, the
probability of a sample within + 8 /2 of x is =
S f(x), but & is constant wrt 0, so it just
drops out of
d/d 6 logl(...)=0. v

Ex3: | got data; a little birdie tells me
it's normal (but does not tell me 0?)

x XK K XKHK x

Observed Data

r —
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Which is more likely: (a) this?

M, 0% both unknown

x XXX XK x

Which is more likely: (b) or this?

M, 02 both unknown

f Observed Data

X XK XXX x

Observed Data

'

Which is more likely: (c) or this?

M, 0% both unknown

Obseried Data
joa

Which is more likely: (d) or this?

I, 0% both unknown

05

Observed Data
u

Which is more likely: (d) or this?
£, 0 both unknown
Looks good by eye, but how do | optimize my estimates of (L &:Oz ?

Obserled Data
M

Ex 3: 2~ N(p,0?), p,o? both unknown

Likelihood
surfac
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Ex 3: x; ~ N(u,0%), p,0? both unknown

InL(x1, %2, ..., 2n|01,02) =

1<i<n 20
; T — 0
s I L(w1, 72, .., nl01,65) = Y % =0
1<i<n
Likelihood N
surface 0, = (Zlgzgnml) /71 =1

Sample mean is MLE of

0 population mean, again
2

0 In general, a problem like this resuls in 2 equations in 2 unknowns.
Easy in this case, since 62 drops out of the 9/d 6 | = 0 equationys
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..o 2
Z ,%11127792 _ M

In L(z1, z2,. . .

2]
26, In L(z1, z2, . . .

Ex. 3, (cont.)

1 z; — 60,)?
,Tnl01,02) = Z *§1ﬂ27n92*%
1<i<n 2
1 2w (z; — 01)?
B I S
L2 220 26

’ b = (Zlgign(zi—él)2> /n = 3

Sample variance is MLE of
population variance

Summary

* MLE is one way to estimate parameters from data
*You choose the form of the model (normal,
binomial, ...)

*Math chooses the value(s) of parameter(s)

* Has the intuitively appealing property that the
parameters maximize the likelihood of the observed
data; basically just assumes your sample is
“representative”




