random variables

random variables

A *random variable* is a *numeric function* of the outcome of an experiment, not the outcome itself.

Ex.

Let H be the *number* of Heads when 20 coins are tossed

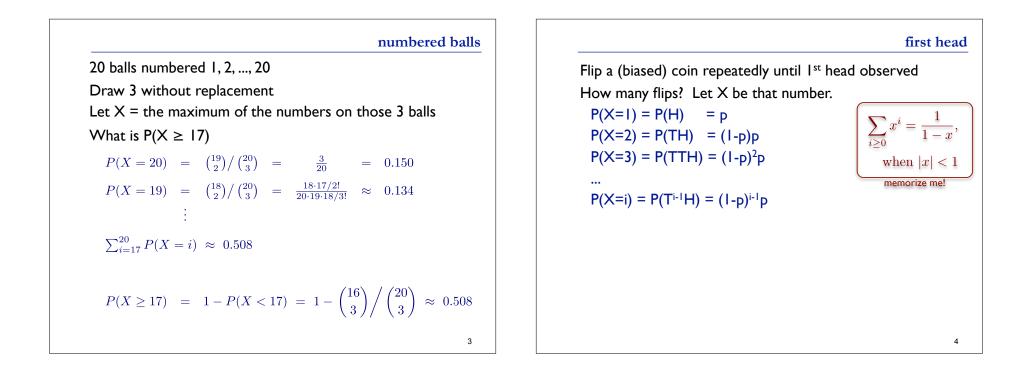
Let T be the *total* of 2 dice rolls

Let X be the number of coin tosses needed to see Ist head

Note: even if the underlying experiment has "equally likely outcomes," the associated random variable *may not*

X = #H	P(X)
0	P(X=0) = 1/4
I	$\int \mathbf{p}(\mathbf{X} - \mathbf{I}) = \mathbf{I}(\mathbf{z})$
I	P(X=1) = 1/2
2	P(X=2) = 1/4
	X = #H 0 1 1 2

2



probability mass functions

5

A *discrete* random variable is one taking on a *countable* number of possible values.

Ex:

X = sum of 3 dice, $3 \le X \le 18$, $X \in N$

Y = position of Ist head in seq of coin flips, $I \leq Y, Y \in N$

Z = largest prime factor of (I+Y), $Z \in \{2, 3, 5, 7, 11, ...\}$

probability mass functions

A *discrete* random variable is one taking on a *countable* number of possible values.

Ex:

1/6

321

1

X = sum of 3 dice, $3 \le X \le 18$, $X \in N$

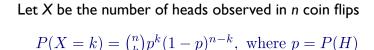
Definition: If X is a discrete random variable taking on values from a countable set $T \subseteq \mathcal{R}$, then

$$p_{x}(a) = \begin{cases} P(X=a) & \text{for } a \in T \\ 0 & \text{otherwise} \end{cases}$$

is called the probability mass function. Note: $\sum_{a \in T} p(a) = 1$

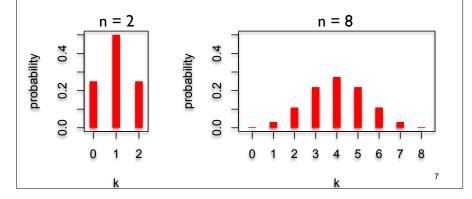
6

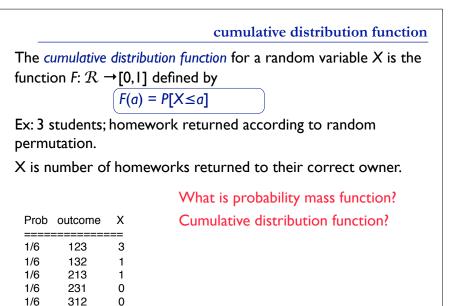
8



$$P(X = k) = {\binom{k}{k}} p^{*} (1-p)^{*}$$
, where $p = 1$

Probability mass function $(p = \frac{1}{2})$:





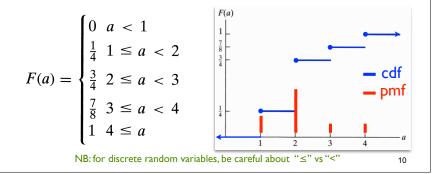
cumulative distribution function

The cumulative distribution function for a random variable X is the function $F: \mathcal{R} \rightarrow [0, 1]$ defined by

$$F(a) = P[X \le a]$$

Ex: if X has probability mass function given by:

$$p(1) = \frac{1}{4}$$
 $p(2) = \frac{1}{2}$ $p(3) = \frac{1}{8}$ $p(4) = \frac{1}{8}$



expectation

For a discrete r.v. X with p.m.f. $p(\bullet)$, the expectation of X, aka expected value or mean, is

 $\left[E[X] = \sum_{x} xp(x)\right]$

average of random values, *weighted* by their respective probabilities

For the equally-likely outcomes case, this is just the average of the possible random values of \boldsymbol{X}

For unequally-likely outcomes, it is again the average of the possible random values of X, weighted by their respective probabilities

Ex 1: Let X = value seen rolling a fair die p(1), p(2), ..., p(6) = 1/6

$$E[X] = \sum_{i=1}^{6} ip(i) = \frac{1}{6}(1+2+\dots+6) = \frac{21}{6} = 3.5$$

Ex 2: Coin flip; X = +1 if H (win \$1), -1 if T (lose \$1)

 $E[X] = (+1) \cdot p(+1) + (-1) \cdot p(-1) = 1 \cdot (1/2) + (-1) \cdot (1/2) = 0$

cumulative distribution function

The cumulative distribution function for a random variable X is the function $F: \mathcal{R} \rightarrow [0,1]$ defined by

 $F(a) = P[X \le a]$

$$F(a) = \sum_{j \le a} p_X(a) = \sum_{j \le a} Pr(X = a)$$

summing over $j \in Range(X)$

expectation

9

expectation

For a discrete r.v. X with p.m.f. $p(\bullet)$, the expectation of X, aka expected value or mean, is

 $E[X] = \sum_{x} xp(x)$

average of random values, weighted by their respective probabilities

Another view: A 2-person gambling game. If X is how much you win playing the game once, how much would you expect to win, on average, per game, when repeatedly playing?

13

or a discrete r.v. X with p.m alue or mean, is	expectation .f. p(•), the expectation of X, aka expected
$E[X] = \sum_{x} x p(x)$	average of random values, weighted by their respective probabilities
	olling a fair die $p(1), p(2),, p(6) = 1/6$ t roll, how much do you expect to win?
$E[X] = \sum_{i=1}^{6} ip(i) = \frac{1}{6}$	

14

expectationFor a discrete r.v. X with p.m.f. $p(\bullet)$, the expectation of X, aka expected
value or mean, is $E[X] = \sum_{x} xp(x)$ average of random values, weighted
by their respective probabilitiesEx 2: Coin flip; X = +1 if H (win \$1), -1 if T (lose \$1) $E[X] = (+1) \cdot p(+1) + (-1) \cdot p(-1) = 1 \cdot (1/2) + (-1) \cdot (1/2) = 0$ "a fair game": in repeated play you expect to win as much as you
lose. Long term net gain/loss = 0.

expectation For a discrete r.v. X with p.m.f. $p(\bullet)$, the expectation of X, aka expected value or mean, is Another view: $E[X] = \sum_{s \in S} X(s) \cdot p(s)$ $E[X] = \sum_{x} xp(x)$ Example: 3 students; homework returned according to random permutation. X is number of homeworks returned to their correct owner. Prob outcome X E(X) = ?_____ 1/6 123 З $E(X) = 0 \cdot \frac{2}{6} + 1 \cdot \frac{3}{6} + 3 \cdot \frac{1}{6}$ 1/6 132 1 213 1/6 1 1/6 231 0 1/6 312 0 1/6 321 1 $= X(123) \cdot \frac{1}{6} + X(132) \cdot \frac{1}{6} + X(213) \cdot \frac{1}{6} + X(231) \cdot \frac{1}{6} + X(312) \cdot \frac{1}{6} + X(321) \cdot$ For a discrete r.v. X with p.m.f. $p(\cdot)$, the expectation of X, aka expected value or mean, is $E[X] = \sum_{x} xp(x) \qquad \text{Another view:} \quad E[X] = \sum_{s \in S} X(s) \cdot p(s)$ 20 balls numbered 1, 2, ..., 20 Draw 3 without replacement Let X = the maximum of the numbers on those 3 balls E(X) = ? $E(X) = \sum_{k=3}^{20} k \frac{\binom{k-1}{2}}{\binom{20}{3}}$

17