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A random variable is a numeric function of the outcome of an 
experiment, not the outcome itself.  
Ex.

Let H be the number of Heads when 20 coins are tossed
Let T be the total of 2 dice rolls
Let X be the number of coin tosses needed to see 1st head

Note: even if the underlying experiment has “equally likely 
outcomes,” the associated random variable may not 

Outcome X = #H P(X)
TT 0 P(X=0) = 1/4
TH 1

 P(X=1) = 1/2
HT 1
HH 2 P(X=2) = 1/4

}

20 balls numbered 1, 2, ..., 20
Draw 3 without replacement
Let X = the maximum of the numbers on those 3 balls

What is P(X ≥ 17) 

numbered balls
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first head
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Flip a (biased) coin repeatedly until 1st head observed
How many flips?  Let X be that number.

P(X=1) = P(H)     = p    
P(X=2) = P(TH)   = (1-p)p 
P(X=3) = P(TTH) = (1-p)2p
...
P(X=i) = P(Ti-1H) = (1-p)i-1p

memorize me!



A discrete random variable is one taking on a countable 
number of possible values.
Ex:

X = sum of 3 dice,   3 ≤ X ≤ 18,  X ∈ N
Y = position of 1st head in seq of coin flips,   1 ≤ Y,  Y ∈ N
Z = largest prime factor of (1+Y),    Z ∈ {2, 3, 5, 7, 11, ...}

probability mass functions
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A discrete random variable is one taking on a countable 
number of possible values.
Ex:

X = sum of 3 dice,   3 ≤ X ≤ 18,  X ∈ N

Definition: If X is a discrete random variable taking on values 
from a countable set T ⊆ R, then

is called the probability mass function.  Note:

probability mass functions
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X

X

Let X be the number of heads observed in n coin flips

Probability mass function (p = ½):
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cumulative distribution function
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Prob   outcome     X
===============
1/6         123          3
1/6         132          1 
1/6         213          1
1/6         231          0
1/6         312          0
1/6         321          1

The cumulative distribution function for a random variable X is the 
function F: R →[0,1] defined by 
                        F(a) = P[X≤a]

Ex: 3 students; homework returned according to random 
permutation. 

X is number of homeworks returned to their correct owner.

What is probability mass function? 
Cumulative distribution function?



cumulative distribution function
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The cumulative distribution function for a random variable X is the 
function F: R →[0,1] defined by 
                        F(a) = P[X≤a]

F (a) =
X

ja

pX(a) =
X

ja

Pr(X = a)

summing over j 2 Range(X)

The cumulative distribution function for a random variable X is 
the function F: R →[0,1] defined by 
                        F(a) = P[X≤a]

Ex: if X has probability mass function given by:

cdf
pmf

cumulative distribution function

10NB: for discrete random variables, be careful about  “≤” vs “<”

expectation
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For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

For the equally-likely outcomes case, this is just the average of the 
possible random values of X

For unequally-likely outcomes, it is again the average of the possible 
random values of X, weighted by their respective probabilities

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)

  E[X] = (+1)•p(+1) + (-1)•p(-1) = 1•(1/2) +(-1)•(1/2) = 0

expectation
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average of random values, weighted 
by their respective probabilities



For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

Another view:  A 2-person gambling game.  If X is how much you 
win playing the game once, how much would you expect to win, on 
average, per game, when repeatedly playing?

expectation
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average of random values, weighted 
by their respective probabilities

For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6
If you win X dollars for that roll, how much do you expect to win?

expectation
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average of random values, weighted 
by their respective probabilities

For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)

  E[X] = (+1)•p(+1) + (-1)•p(-1) = 1•(1/2) +(-1)•(1/2) = 0

“a fair game”: in repeated play you expect to win as much as you 
lose.  Long term net gain/loss = 0.

expectation

15

average of random values, weighted 
by their respective probabilities

For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)               Another view: 

expectation
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Example:    3 students; homework returned according to random 
permutation. 

X is number of homeworks returned to their correct owner.

                                        E (X) = ?Prob   outcome     X
===============
1/6         123          3
1/6         132          1 
1/6         213          1
1/6         231          0
1/6         312          0
1/6         321          1

E(X) = 0 · 2
6
+ 1 · 3

6
+ 3 · 1

6

= X(123) · 1
6
+X(132) · 1

6
+X(213) · 1

6
+X(231) · 1

6
+X(312) · 1

6
+X(321) · 1

6



For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)               Another view: 

expectation
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20 balls numbered 1, 2, ..., 20
Draw 3 without replacement
Let X = the maximum of the numbers on those 3 balls
E(X) = ?

E(X) =
20X
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