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MLE + EM 
The Expectation-Maximization 

Algorithm
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One (of many) approaches to param. est.
Likelihood of (indp) observations x1, x2, ..., xn 

As a function of θ, what θ maximizes the 
likelihood of the data actually observed
Typical approach: 

Maximum Likelihood 
Parameter Estimation

L(x1, x2, . . . , xn | �) =
n�

i=1

f(xi | �)

@
@✓L(~x | ✓) = 0 or

@
@✓ logL(~x | ✓) = 0

3

Ex 3: xi � N(µ,⇥2), µ,⇥2 both unknown
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Sample mean is MLE of 
population mean, again

In general, a problem like this results in 2 equations in 2 unknowns.  
Easy in this case, since θ2 drops out of the ∂/∂θ1 = 0 equation

Likelihood 
surface

lnL(x1, x2, . . . , xn|✓1, ✓2) =
nX

i=1

�1

2
ln(2⇡✓2)�

(xi � ✓1)2

2✓2

@

@✓1
lnL(x1, x2, . . . , xn|✓1, ✓2) =

nX

i=1

(xi � ✓1)

✓2
= 0

b
✓1 =

 
nX

i=1

xi

!
/n = x

4

Maximum likelihood estimation tells us how to take a 
bunch of i.i.d. samples X1, X2, ..., Xn 
from a distribution with density                                  
and compute the most likely value     of  

The MLE          is unbiased if  

Bias

f(·|✓)
✓⇥̂

⇥̂ E(⇥̂) = ✓
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Ex. 3, (cont.) 

Sample variance is MLE of 
population variance

lnL(x1, x2, . . . , xn|✓1, ✓2) =
nX

i=1

�1

2
ln(2⇡✓2)�

(xi � ✓1)2

2✓2

@

@✓2
lnL(x1, x2, . . . , xn|✓1, ✓2) =

nX

i=1

�1

2

2⇡

2⇡✓2
+

(xi � ✓1)2

2✓22
= 0

b
✓2 =

⇣Pn
i=1(xi � b

✓1)2
⌘
/n = s

2

 
 
This?  
 

 
 

A modeling problem, not a math problem...
6

More Complex Example

 
 
This?  
 

Or this?  
 
 

(A modeling decision, not a math problem...,  
but if the latter, what math?)
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More Complex Example
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No 
closed-
form
max

Parameters �

means µ1 µ2

variances ⇤2
1 ⇤2

2

mixing parameters ⌅1 ⌅2 = 1� ⌅1

P.D.F. f(x|µ1,⇤2
1) f(x|µ2,⇤2

2)

Likelihood

L(x1, x2, . . . , xn|µ1, µ2,⇤2
1 ,⇤2

2 , ⌅1, ⌅2)

=
⇥n

i=1

�2
j=1 ⌅jf(xi|µj ,⇤2

j )

Gaussian Mixture Models / Model-based Clustering

separately

together
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EM 
The Expectation-Maximization 

Algorithm
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Messy: no closed form solution known for 
finding θ maximizing L

But what if we  
knew the  
hidden data?

A What-If Puzzle I
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Messy: no closed form solution known for 
finding θ maximizing L

What if we knew the θ, how would we 
estimate  P[zij=1 | xi ]?

A What-If Puzzle II
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Assume θ =  known & fixed

Pr(zi1 = 1|xi) =
Pr(xi|zi1 = 1)Pr(zi1 = 1)

Pr(xi)

Pr(xi) = Pr(xi|zi1 = 1)Pr(zi1 = 1)

+Pr(xi|zi2 = 1)Pr(zi2 = 1)

seeing a value within

think of

Pr(xi|...) as probability of

±�/2 of xi

Pr(zi1 = 1|xi) =
�f1(xi|✓)⌧1

�f1(xi|✓)⌧1 + �f2(xi|✓)⌧2

=
f1(xi|✓)⌧1

f1(xi|✓)⌧1 + f2(xi|✓)⌧2

Pr(zi1 = 1|xi) =?
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EM as Egg vs Chicken
IF parameters θ known, could estimate zij 

P[zi1=1] vs P[zi2=1]

IF zij known, could estimate parameters θ 
E.g., only points in cluster 2 influence µ2, σ2

But we know neither; (optimistically) iterate: 
E-step: calculate expected zij, given parameters

M-step: calculate “MLE” of parameters, given E(zij)

Overall, a clever “hill-climbing” strategy 

The EM Algorithm
Samples x1, . . . , xn Missing data z1, . . . , zm

Initialize: ~✓0

Repeat until convergence:

Given

~

✓

t
compute E(zi|x1, . . . , xn) 8i

Set

~

✓

t+1
to maximize E(LogLikelihood(~x, ~z|~✓)

Expectation:

Maximization:

Desired parameters: ~✓ : ✓1, . . . , ✓k

the expectation is with respect to hidden parameters ~z

t = 0, 1, . . .
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The E-step:   
Find E(zij), i.e., P(zij=1)

Assume θ =  known & fixed

Repeat 
for 

each 
xi}Pr(zi1 = 1|xi) =

Pr(xi|zi1 = 1)Pr(zi1 = 1)

Pr(xi)

Pr(xi) = Pr(xi|zi1 = 1)Pr(zi1 = 1)

+Pr(xi|zi2 = 1)Pr(zi2 = 1)

Pr(zi1 = 1|xi) =
f1(xi|✓)⌧1

f1(xi|✓)⌧1 + f2(xi|✓)⌧1

seeing a value within

think of

Pr(xi|...) as probability of

±�/2 of xi
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M-step: 
Set

~

✓

t+1
to maximize E(LogLikelihood(~x, ~z|~✓)

The E-step:   
Find E(zij), i.e., P(zij=1) for each i knowing θ 

=
f1(xi|✓)⌧1

f1(xi|✓)⌧1 + f2(xi|✓)⌧2
Pr(zi1 = 1|xi) =
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Complete Data 
Likelihood

(Better):

equal, if zij are 0/1


