

Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est. Likelihood of (indp) observations $x_1, x_2, ..., x_n$

$$L(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

As a function of θ , what θ maximizes the likelihood of the data actually observed Typical approach: $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta) = 0$ or $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta) = 0$

Ex 3: $x_i \sim N(\mu, \sigma^2), \ \mu, \sigma^2$ both unknown $\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^n -\frac{1}{2} \ln(2\pi\theta_2) - \frac{(x_i - \theta_1)^2}{2\theta_2}$ $\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^n \frac{(x_i - \theta_1)}{\theta_2} = 0$ $\lim_{i \to i} \frac{1}{\theta_1} = \left(\sum_{i=1}^n x_i\right)/n = \overline{x}$ Sample mean is MLE of population mean, again Merceral a problem like this results in 2 equations in 2 unknowns. Easy in this case, since θ_2 drops out of the $\partial/\partial \theta_1 = 0$ equation 3

Bias

Maximum likelihood estimation tells us how to take a bunch of i.i.d. samples $X_{l}, X_{2}, ..., X_{n}$ from a distribution with density $f(\cdot|\theta)$ and compute the most likely value $\hat{\Theta}$ of θ

The MLE $\hat{\Theta}$ is unbiased if $E(\hat{\Theta}) = \theta$

2

4

A What-If Puzzle II

Likelihood

$$L(x_1, x_2, \dots, x_n | \overbrace{\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2}^0) = \prod_{i=1}^n \sum_{j=1}^2 \tau_j f(x_i | \mu_j, \sigma_j^2)$$

A

11

Messy: no closed form solution known for finding θ maximizing L

What if we knew the θ , how would we estimate $P[z_{ij}=1 | x_i]$?

Assume
$$\theta$$
 = known & fixed

$$Pr(z_{i1} = 1|x_i) =?$$
think of

$$Pr(x_i|...) \text{ as probability of seeing a value within } \pm \delta/2 \text{ of } x_i$$

$$Pr(z_{i1} = 1|x_i) = \frac{Pr(x_i|z_{i1} = 1)Pr(z_{i1} = 1)}{Pr(x_i)}$$

$$Pr(x_i) = Pr(x_i|z_{i1} = 1)Pr(z_{i1} = 1) + Pr(x_i|z_{i2} = 1)Pr(z_{i2} = 1)$$

$$Pr(z_{i1} = 1|x_i) = \frac{\delta f_1(x_i|\theta)\tau_1}{\delta f_1(x_i|\theta)\tau_1 + \delta f_2(x_i|\theta)\tau_2}$$

$$= \frac{f_1(x_i|\theta)\tau_1}{f_1(x_i|\theta)\tau_1 + f_2(x_i|\theta)\tau_2}$$
12

EM as Egg vs Chicken		
<i>IF</i> parameters θ known, could estimate z_{ij} $P[z_{i1}=1] vs P[z_{i2}=1]$		Sampl
IF z_{ij} known, could estimate parameters θ		Initializ
E.g., only points in cluster 2 influence μ_2, σ_2		Repea
But we know neither; (optimistically) iterate:		Eve
E-step: calculate expected z _{ij} , given parameters		CXL
M-step: calculate "MLE" of parameters, given $E(z_{ij})$		Ma
Overall, a clever "hill-climbing" strategy		
13		

The EM Algorithm

Samples x_1, \ldots, x_n Missing data z_1, \ldots, z_m Desired parameters: $\vec{\theta} : \theta_1, \ldots, \theta_k$ Initialize: $\vec{\theta}^0$ Repeat until convergence: $t = 0, 1, \ldots$ Expectation: Given $\vec{\theta}^t$ compute $E(z_i | x_1, \ldots, x_n)$ $\forall i$ Maximization: Set $\vec{\theta}^{t+1}$ to maximize $E(\text{LogLikelihood}(\vec{x}, \vec{z} | \vec{\theta})$ the expectation is with respect to hidden parameters \vec{z}

The E-step:
Find E(z_{ij}), i.e., P(z_{ij}=1)think of
$$Pr(x_i|...)$$
 as probability of
seeing a value within
 $\pm \delta/2$ of x_i Assume θ = known & fixed $Pr(z_{i1} = 1|x_i) = \frac{Pr(x_i|z_{i1} = 1)Pr(z_{i1} = 1)}{Pr(x_i)}$
 $Pr(x_i) = Pr(x_i|z_{i1} = 1)Pr(z_{i1} = 1)$
 $+Pr(x_i|z_{i2} = 1)Pr(z_{i2} = 1)$ Repeat
for
each
 x_i $Pr(z_{i1} = 1|x_i) = \frac{f_1(x_i|\theta)\tau_1}{f_1(x_i|\theta)\tau_1 + f_2(x_i|\theta)\tau_1}$ $Pr(x_i = 1|x_i) = \frac{f_1(x_i|\theta)\tau_1}{f_1(x_i|\theta)\tau_1 + f_2(x_i|\theta)\tau_1}$

The E-step: Find E(z_{ij}), i.e., P(z_{ij}=1) for each i knowing θ $Pr(z_{i1} = 1|x_i) = \frac{f_1(x_i|\theta)\tau_1}{f_1(x_i|\theta)\tau_1 + f_2(x_i|\theta)\tau_2}$ **M-step:** Set $\vec{\theta}^{t+1}$ to maximize $E(\text{LogLikelihood}(\vec{x}, \vec{z}|\vec{\theta})$

Complete Data Likelihood
Recall:
$z_{1j} \;=\; \left\{ egin{array}{ccc} 1 & ext{if} \; x_1 \; ext{drawn from} \; f_j \ 0 & ext{otherwise} \end{array} ight.$
so, correspondingly,
$L(x_1, z_{1j} \mid \theta) = \begin{cases} \tau_1 f_1(x_1 \mid \theta) & \text{if } z_{11} = 1 \\ \tau_2 f_2(x_1 \mid \theta) & \text{otherwise} \end{cases} $ equal, if z_{ij} are 0/1
Formulas with "if's" are messy; can we blend more smoothly? Yes, many possibilities. Idea 1:
$L(x_1, z_{1j} \mid \theta) = z_{11} \cdot \tau_1 f_1(x_1 \mid \theta) + z_{12} \cdot \tau_2 f_2(x_1 \mid \theta)$
Idea 2 (Better): $L(x_1, z_{1j} \mid \theta) = (\tau_1 f_1(x_1 \mid \theta))^{z_{11}} \cdot (\tau_2 f_2(x_1 \mid \theta))^{z_{12}}$ 17