

V	X	Ι	2	3	$f_{W}(w)$		X	Ι	2	3	$f_X(x)$	
	Ι	2/24	2/24	2/24	6/24		Ι	4/24	1/24	1/24	6/24	
	2	2/24	2/24	2/24	6/24		2	0	3/24	3/24	6/24	
	3	2/24	2/24	2/24	6/24		3	0	4/24	2/24	6/24	
	4	2/24	2/24	2/24	6/24		4	4/24	0	2/24	6/24	
f	$f_{z}(z)$	8/24	8/24	8/24		1	$f_{Y}(y)$	8/24	8/24	8/24	1	
largin	$f_{z}(z)$ 8/24 8/24 8/24 arginal PMF of one r.v.: sum er the other (Law of total probability)						$f_{Y}(y) = \Sigma_{x} f_{XY}(x, y)$					

joint, marginals and independence

Repeating the Definition: Two random variables X and Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent (for any fixed x, y), i.e.

 $\forall x, y P({X = x} & {Y=y}) = P({X=x}) \cdot P({Y=y})$

joint, marginals and independence

Repeating the Definition: Two random variables X and Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent (for any fixed x, y), i.e.

 $\forall x, y P({X = x} \& {Y=y}) = P({X=x}) \cdot P({Y=y})$

Equivalent Definition: Two random variables X and Y are independent if their *joint* probability mass function is the product of their *marginal* distributions, i.e.

 $\forall x, y f_{XY}(x, y) = f_X(x) \bullet f_Y(y)$

5

joint, marginals and independence

Repeating the Definition: Two random variables X and Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent (for any fixed x, y), i.e.

 $\forall x, y P({X = x} \& {Y=y}) = P({X=x}) \cdot P({Y=y})$

Equivalent Definition: Two random variables X and Y are independent if their *joint* probability mass function is the product of their *marginal* distributions, i.e.

$$\forall \mathbf{x}, \mathbf{y} \ \mathbf{f}_{\mathsf{X}\mathsf{Y}}(\mathbf{x}, \mathbf{y}) = \mathbf{f}_{\mathsf{X}}(\mathbf{x}) \bullet \mathbf{f}_{\mathsf{Y}}(\mathbf{y})$$

Exercise: Show that this is also true of their *cumulative* distribution functions

6

expectation of a function of 2 r.v.'s

A function g(X,Y) defines a new random variable.

Its expectation is:

 $E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) f_{XY}(x, y)$

Expectation is linear. E.g., if g is linear:

E[g(X, Y)] = E[a X + b Y + c] = a E[X] + b E[Y] + c

expectation of a function of 2 r.v.'s

A function g(X,Y) defines a new random variable.

Its expectation is:

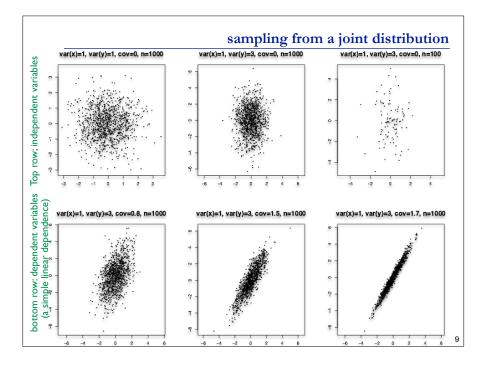
 $E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) f_{XY}(x, y)$

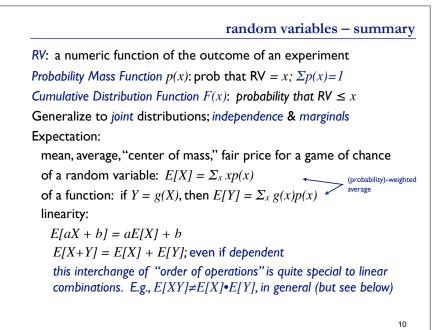
🖘 like slide 17

Expectation is linear. E.g., if g is linear:

E[g(X, Y)] = E[a X + b Y + c] = a E[X] + b E[Y] + c

Example:	XY	Ι	2	3
g(X,Y) = 2X-Y	-1	•1• 4/24	<mark>0 •</mark> 1/24	-1 • 1/24
E[g(X,Y)] = 72/24 = 3	2	3 • 0/24	<mark>2 •</mark> 3/24	I • 3/24
$E[g(X,Y)] = 2 \cdot E[X] - E[Y]$	3	5 • 0/24	4 • 4/24	3•2/24
$= 2 \cdot 2 \cdot 5 - 2 = 3$	4	7 • 4/24	<mark>6 •</mark> 0/24	5 • 2/24
	e uniform	8		





random variables - summary Conditional Expectation: $E[X | A] = \sum_{x} x \bullet P(X = x | A)$ Law of Total Expectation $E[X] = E[X | A] \bullet P(A) + E[X | \neg A] \bullet P(\neg A)$ Variance: $Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2]$ Standard deviation: $\sigma = \sqrt{Var[X]}$ Var[aX + b] = $a^2 Var[X]$ "Variance is insensitive to location, quadratic in scale"
If X & Y are independent, then $E[X \bullet Y] = E[X] \bullet E[Y]$ Var[X + Y] = Var[X]+Var[Y]
(These two equalities hold for indp rv's; but not in general.)

Important Examples: Uniform(a,b): $P(X = i) = \frac{1}{b-a+1}$ $\mu = \frac{a+b}{2}, \sigma^2 = \frac{(b-a)(b-a+2)}{12}$ Bernoulli: P(X = 1) = p, P(X = 0) = 1 - p $\mu = p, \sigma^2 = p(1-p)$ Binomial: $P(X = i) = {n \choose i} p^i (1-p)^{n-i}$ $\mu = np, \sigma^2 = np(1-p)$ Poisson: $P(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}$ $\mu = \lambda, \sigma^2 = \lambda$ $Bin(n,p) \approx Poi(\lambda)$ where $\lambda = np$ fixed, $n \rightarrow \infty$ (and so $p = \lambda/n \rightarrow 0$) Geometric $P(X = k) = (1-p)^{k-1}p$ $\mu = 1/p, \sigma^2 = (1-p)/p^2$ Many others, e.g., hypergeometric, negative binomial, ...