
joint distributions

Often, several random variables are simultaneously observed 
X = height and Y = weight
X = cholesterol and Y = blood pressure
X1, X2, X3 = work loads on servers A, B, C

Joint probability mass function:
fXY(x, y) = P({X = x} & {Y = y})

Joint cumulative distribution function:
FXY(x, y) = P({X ≤ x} & {Y ≤ y})

1

examples

Two joint PMFs 
 
 
 
 
 
 

P(W = Z) = 3 * 2/24 = 6/24

P(X = Y) = (4 + 3 + 2)/24 = 9/24
Can look at arbitrary relationships among variables this way
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W  Z 1 2 3

1 2/24 2/24 2/24

2 2/24 2/24 2/24

3 2/24 2/24 2/24

4 2/24 2/24 2/24

X    Y 1 2 3

1 4/24 1/24 1/24

2 0 3/24 3/24

3 0 4/24 2/24

4 4/24 0 2/24

marginal distributions

Two joint PMFs  
 
 
 
 
 
 
 
 
 
 

Question:  Are W & Z independent?  Are X & Y 
independent?
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W  Z 1 2 3 fW(w)
1 2/24 2/24 2/24 6/24

2 2/24 2/24 2/24 6/24

3 2/24 2/24 2/24 6/24

4 2/24 2/24 2/24 6/24

fZ(z) 8/24 8/24 8/24

X    Y 1 2 3 fX(x)
1 4/24 1/24 1/24 6/24

2 0 3/24 3/24 6/24

3 0 4/24 2/24 6/24

4 4/24 0 2/24 6/24

fY(y) 8/24 8/24 8/24

fY(y) = Σx fXY(x,y)
fX(x) = Σy fXY(x,y)

Marginal PMF of one r.v.: sum 
over the other (Law of total probability)

joint, marginals and independence

Repeating the Definition: Two random variables X and Y are 
independent if the events {X=x} and {Y=y} are independent 
(for any fixed x, y), i.e.

∀x, y P({X = x} & {Y=y}) = P({X=x}) • P({Y=y})
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joint, marginals and independence

Repeating the Definition: Two random variables X and Y are 
independent if the events {X=x} and {Y=y} are independent 
(for any fixed x, y), i.e.

∀x, y P({X = x} & {Y=y}) = P({X=x}) • P({Y=y})

Equivalent Definition: Two random variables X and Y are 
independent if their joint probability mass function is the 
product of their marginal distributions, i.e.

∀x, y fXY(x,y) = fX(x) • fY(y)
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joint, marginals and independence

Repeating the Definition: Two random variables X and Y are 
independent if the events {X=x} and {Y=y} are independent 
(for any fixed x, y), i.e.

∀x, y P({X = x} & {Y=y}) = P({X=x}) • P({Y=y})

Equivalent Definition: Two random variables X and Y are 
independent if their joint probability mass function is the 
product of their marginal distributions, i.e.

∀x, y fXY(x,y) = fX(x) • fY(y)

Exercise:  Show that this is also true of their cumulative 
distribution functions
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expectation of  a function of  2 r.v.’s

A function g(X, Y) defines a new random variable.

Its expectation is:

E[g(X, Y)] = ΣxΣy g(x, y) fXY(x,y)

Expectation is linear.  E.g., if g is linear:

E[g(X, Y)] = E[a X + b Y + c] = a E[X] + b E[Y] + c
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expectation of  a function of  2 r.v.’s

A function g(X, Y) defines a new random variable.

Its expectation is:

E[g(X, Y)] = ΣxΣy g(x, y) fXY(x,y)

Expectation is linear.  E.g., if g is linear:

E[g(X, Y)] = E[a X + b Y + c] = a E[X] + b E[Y] + c

Example:

g(X, Y) = 2X-Y

E[g(X,Y)] = 72/24 = 3

E[g(X,Y)] = 2•E[X] - E[Y]

               = 2•2.5 - 2 = 3
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X    Y 1 2 3

1 1 • 4/24 0 • 1/24 -1 • 1/24

2 3 • 0/24 2 • 3/24 1 • 3/24

3 5 • 0/24 4 • 4/24 3 • 2/24

4 7 • 4/24 6 • 0/24 5 • 2/24

☜ like slide 17

recall both marginals are uniform
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sampling from a joint distribution
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random variables – summary

RV:  a numeric function of the outcome of an experiment

Probability Mass Function p(x): prob that RV = x; Σp(x)=1
Cumulative Distribution Function F(x):  probability that RV ≤ x
Generalize to joint distributions; independence & marginals

Expectation: 
mean, average, “center of mass,” fair price for a game of chance

of a random variable:  E[X] = Σx xp(x)
of a function:  if Y = g(X), then E[Y] = Σx g(x)p(x)
linearity: 

E[aX + b] = aE[X] + b
E[X+Y] = E[X] + E[Y]; even if dependent
this interchange of  “order of operations” is quite special to linear 
combinations.  E.g., E[XY]≠E[X]•E[Y], in general (but see below)
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(probability)-weighted  
average

random variables – summary

Conditional Expectation:

  E[X | A] = ∑x x•P(X=x | A)
Law of Total Expectation

E[X] = E[X | A]•P(A) + E[X | ¬ A]•P(¬ A)
Variance:  

Var[X] = E[ (X-E[X])2 ] = E[X2] - (E[X])2]
Standard deviation: σ = √Var[X]
Var[aX+b] = a2 Var[X]

If X & Y are independent, then 

E[X•Y] = E[X]•E[Y] 
Var[X+Y] = Var[X]+Var[Y] 
(These two equalities hold for indp rv’s; but not in general.)
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“Variance is insensitive to location, quadratic in scale”

random variables – summary

Important Examples:

Uniform(a,b): 

Bernoulli: P(X = 1) = p, P(X = 0) = 1-p  μ = p,   σ2= p(1-p)

Binomial:      μ = np, σ2 = np(1-p)

Poisson:     μ = λ,   σ2 = λ

Bin(n,p) ≈ Poi(λ) where λ = np fixed, n →∞ (and so p=λ/n → 0)

Geometric P(X = k) = (1-p)k-1p μ = 1/p, σ2 = (1-p)/p2

Many others, e.g., hypergeometric, negative binomial, …
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