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Sample space:  S = set of all potential outcomes of experiment

E.g., flip two coins: S = {(H,H), (H,T), (T,H), (T,T)}

Events:  E ⊆ S is an arbitrary subset of the sample space

≥1 head in 2 flips:  E = {(H,H), (H,T), (T,H)}    S =

Probability:

A function from subsets of S to real numbers – Pr: 2S → [0,1]

Probability Axioms:

Axiom 1 (Non-negativity):  0 ≤ Pr(E)

Axiom 2 (Normalization):  Pr(S) = 1

Axiom 3 (Additivity):  EF = ∅ ⇒ Pr(E ∪ F) = Pr(E) + Pr(F) 
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Probability space equally likely outcomes 

 Simplest case: sample spaces with equally likely outcomes.

 Coin flips: S = {Heads, Tails}
 Flipping two coins: S = {(H,H),(H,T),(T,H),(T,T)}
 Roll of 6-sided die: S = {1, 2, 3, 4, 5, 6}

 Pr(each outcome) = 

 In that case, 

uniform distribution 
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General defn:                                    where P(F) > 0

Implies:  P(EF) = P(E|F) P(F)       (“the chain rule”)

General definition of Chain Rule:

conditional probability & chain rule 
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P(E) = P(EF) + P(EFc)
       = P(E|F) P(F) + P(E|Fc) P(Fc)
       = P(E|F) P(F) + P(E|Fc) (1-P(F))

More generally, if F1, F2, ..., Fn partition S (mutually 

exclusive, ∪i Fi = S, P(Fi)>0), then

P(E) = ∑i P(E|Fi) P(Fi)

(Analogous to reasoning by cases; both are very handy.)

weighted average, 
conditioned on event 
F happening or not.

weighted average, 
conditioned on events 
Fi happening or not.

Law of  total probability 
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Most common form:

 

Expanded form (using law of total probability):

Proof:

 

Bayes Theorem 

Independence 
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Independence of events 

Intuition: E is independent of F if the chance of E occurring is 
not affected by whether F occurs.

Formally:

                                 or
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Pr(E|F ) = Pr(E) Pr(E \ F ) = Pr(E)Pr(F )

These two definitions are equivalent.

Independence 

Draw a card from a shuffled deck of 52 cards.

E:  card is a spade

F:  card is an Ace

Are E and F independent?
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Independence 

Toss a coin 3 times. Each of 8 outcomes equally likely. 
Define

A = {at most one T} = {HHH, HHT, HTH, THH}

B = {both H and T occur}= {HHH, TTT}c

Are A and B independent?
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Independence as an assumption 

It is often convenient to assume independence. 

People often assume it without noticing.

Example: A sky diver has two chutes. Let

E = {main chute doesn’t open}          Pr (E) = 0.02

F = {backup doesn’t open}                Pr (F) = 0.1

What is the chance that at least one opens assuming 
independence?
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Independence as an assumption 

It is often convenient to assume independence. 

People often assume it without noticing.

Example: A sky diver has two chutes. Let

E = {main chute doesn’t open}          Pr (E) = 0.02

F = {backup doesn’t open}                Pr (F) = 0.1

What is the chance that at least one opens assuming 
independence?

Note: Assuming independence doesn’t justify the 
assumption! Both chutes could fail because of the same 
rare event, e.g. freezing rain. 11 

Using independence to define a probabilistic model 

We can define our probability model via independence.

Example: suppose a biased coin comes up heads with 
probability 2/3, independent of other flips.

Sample space: sequences of 3 coin tosses.

Pr (3 heads)=?

Pr (3 tails) = ?

Pr (2 heads) = ?
12 
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biased coin 

Suppose a biased coin comes up heads with probability p, 
independent of other flips

 P(n heads in n flips)
 P(n tails in n flips)
 P(HHTHTTT)   
 P(exactly k heads in n flips)
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biased coin 

Suppose a biased coin comes up heads with probability p, 
independent of other flips

 P(n heads in n flips) =  pn�

 P(n tails in n flips) =  (1-p)n�

  Pr(HHTHTTT)   
                            = p2(1-p)p(1-p)3 = p#H(1-p)#T

P(exactly k heads in n flips)

Aside: note that the probability of some number of heads =�

as it should, by the binomial theorem.                
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Suppose a biased coin comes up heads with �
probability p, independent of other flips

P(exactly k heads in n flips)

How does this compare to p=1/2  case?

 
biased coin 
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Suppose a biased coin comes up heads with �
probability p, independent of other flips

P(exactly k heads in n flips)

Note when p=1/2, this is the same result we would have 
gotten by considering n flips in the “equally likely 
outcomes” scenario.  But p≠1/2 makes that inapplicable.  
Instead, the independence assumption allows us to 
conveniently assign a probability to each of the 2n 
outcomes, e.g.:

Pr(HHTHTTT) = p2(1-p)p(1-p)3 = p#H(1-p)#T

 
biased coin 
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Consider the following parallel network

n routers, ith has probability pi of failing, independently

P(there is functional path) =

…

p1

p2

pn

 
network failure 
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Consider the following parallel network

n routers, ith has probability pi of failing, independently
P(there is functional path) = 1 – P(all routers fail)
                          

…

p1

p2

pn

 
network failure 

                          = 1 – p1p2 … pn
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Contrast: a series network

n routers, ith has probability pi of failing, independently

P(there is functional path) = 
       

…

p1

p2

pn

 
network failure 
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Contrast: a series network

n routers, ith has probability pi of failing, independently
P(there is functional path) = 
       P(no routers fail)

…

p1

p2

pn

 
network failure 

= (1 – p1)(1 – p2) … (1 – pn)
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hashing 

A data structure problem:  fast access to small subset of data 
drawn from a large space.

A solution: hash function h:D→{0,...,n-1} crunches/scrambles 
names from large space into small one.  

E.g.,  if x is integer:    h(x) = x mod n  

Everything that hashes to same location stored in linked list.  
Good hash functions approximately randomize placement. 21 

(Large) space of 
potential data 

items, say names 
or SSNs, only a 

few of which are 
actually used

(Small) hash table 
containing  actual data

x

i

h(x) = i

•

0
.
.
.
n-1

D
R

Scenario: Hash m≤n keys from D �
  into size n hash table.  

How well does it work?

Worst case: All collide in one bucket.  (Perhaps too pessimistic?)

Best case: No collisions.                         (Perhaps too optimistic?)

A middle ground: Probabilistic analysis. 

Below, for simplicity, assume 

- Keys drawn from D randomly, independently (with replacement)

- h maps equal numbers of domain points into each range bin, i.e., |D| = 
k|R| for some integer k, and |h-1(i)| = k for all 0 ≤ i ≤ n-1

Many possible questions; a few analyzed below

22 
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hashing 

m keys hashed (uniformly) into a hash table with n buckets
Each key hashed is an independent trial
E = at least one key hashed to first bucket
What is P(E) ?
Solution:
Fi = key i not hashed into first bucket (i=1,2,…,m)
P(Fi) =?
Event (F1 F2 … Fm) = no keys hashed to first bucket
P(E)= ?
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hashing 

m keys hashed (uniformly) into a hash table with n buckets
Each key hashed is an independent trial
E = at least one key hashed to first bucket
What is P(E) ?
Solution:
Fi = key i not hashed into first bucket (i=1,2,…,m)
P(Fi) = 1 – 1/n = (n-1)/n for all i=1,2,…,m
Event (F1 F2 … Fm) = no keys hashed to first bucket
P(E)
         = 1 – P(F1 F2 … Fm)
  = 1 – P(F1) P(F2) … P(Fm)
  = 1 – ((n-1)/n)m  

≈ 1-exp(-m/n) 

indp
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hashing 

m keys hashed (non-uniformly) to table w/ n buckets
Each string hashed is an independent trial, with probability 
pi of getting hashed to bucket i
E = At least 1 of first k buckets gets ≥ 1 key 
What is P(E) ?
Solution:
Fi = at least one key hashed into i-th bucket
P(E) =
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hashing 

m keys hashed (non-uniformly) to table w/ n buckets
Each string hashed is an independent trial, with probability 
pi of getting hashed to bucket i
E = At least 1 of first k buckets gets ≥ 1 key 
What is P(E) ?
Solution:
Fi = at least one key hashed into i-th bucket
P(E) = P(F1 ∪ … ∪ Fk) = 1-P((F

1
 ∪ … ∪ Fk)c)

       = 1 – P(F1
c F2

c … Fk
c)

       = 1 – P(no strings hashed to buckets 1 to k)
       = 1 – (1-p1-p2-…-pk)m

Perfect hashing (i) 

Let |R| = n, D0 ⊆ D, |D0| = m.  A hash function h: D→R is  perfect for 
D0 if h: D0→R is injective (no collisions).   How likely is that?�

 1) Fix h; pick m elements of D0 independently at random ∈ D

P(h is perfect for D0) =�
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Perfect hashing (i) 

Let |R| = n, D0 ⊆ D, |D0| = m.  A hash function h: D→R is  perfect for 
D0 if h: D0→R is injective (no collisions).   How likely is that?�

 1) Fix h; pick m elements of D0 independently at random ∈ D

Again, suppose h maps (1/n)th of D to each element of R.  This is 
like the birthday problem: �

    P(h is perfect for D0) =�

Except for very empty�
tables, a “perfect” hash �
is improbable
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If E and F are independent, 

          then so are E and Fc

          and  so are Ec and F
          and  so are Ec and Fc
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If E and F are independent, 

          then so are E and Fc

          and  so are Ec and F
          and  so are Ec and Fc

Proof:     P(EFc) = P(E) – P(EF)

                  = P(E) – P(E) P(F)

                  = P(E) (1-P(F))

                  = P(E) P(Fc)
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Independence of several events 

Three events E, F, G are mutually independent if
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Pr(E \ F ) = Pr(E)Pr(F )

Pr(F \G) = Pr(F )Pr(G)

Pr(E \G) = Pr(E)Pr(G)

Pr(E \ F \G) = Pr(E)Pr(F )Pr(G)

Pairwise independent 

E, F and G are pairwise independent if E is independent of F, 
F is independent of G, and E is independent of G.

Example: Toss a coin twice.

E =  {HH, HT}

F =  {TH, HH}

G = {HH, TT}

These are pairwise independent, but not mutually 
independent.
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Independence of several events 

Three events E, F, G are mutually independent if
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Pr(E \ F ) = Pr(E)Pr(F )

Pr(F \G) = Pr(F )Pr(G)

Pr(E \G) = Pr(E)Pr(G)

Pr(E \ F \G) = Pr(E)Pr(F )Pr(G)

If E, F and G are independent, then E will be 
independent of any event formed from F and G.

Example:  Show that E is independent of F U G.
Pr ( F U G | E) = Pr (F | E) + Pr (G | E) – Pr (FG | E)
          =  Pr (F) + Pr (G) - Pr (EFG)/Pr(E)
          =     Pr (F) + Pr (G) - Pr (FG)= Pr( F U G )

Summary - Independence 

Events E & F are independent if 

    P(EF) = P(E) P(F), or, equivalently P(E|F) = P(E) (if p(F)>0)

More than 2 events are indp if, for alI subsets, joint probability = 
product of separate event probabilities

Dependent means correlated, associated, (partially) predictive 

Independence can greatly simplify calculations

Independence can be used to define probability models.
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