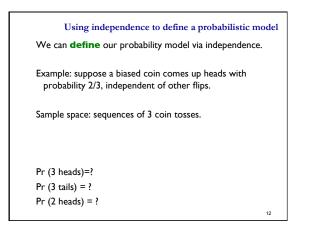
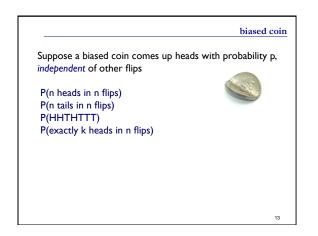
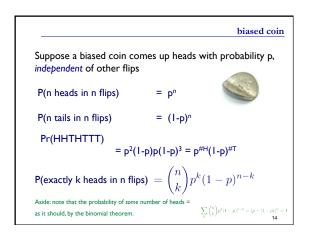


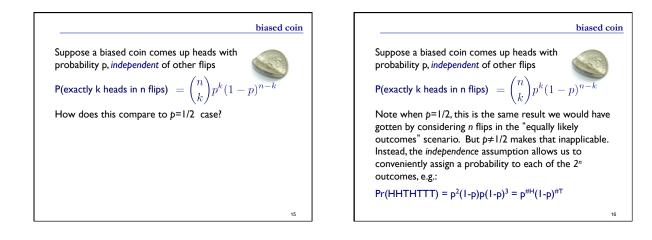
Independence	Independence as an assumption	
Toss a coin 3 times. Each of 8 outcomes equally likely.	It is often convenient to assume independence.	
Define	People often assume it without noticing.	
A = {at most one T} = {HHH, HHT, HTH, THH}		
B = {both H and T occur}= {HHH, TTT} ^c	Example: A sky diver has two chutes. Let	
	$E = \{ main chute doesn't open \}$ $Pr(E) = 0.02$	
Are A and B independent?	$F = \{backup doesn't open\}$ $Pr(F) = 0.1$	
	What is the chance that at least one opens assuming independence?	
9	10	

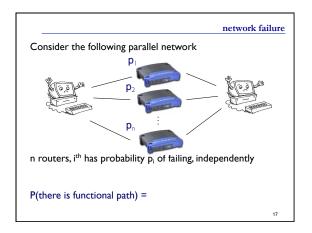
Ind	ependence as an assumptio
It is often convenient to assum	1e independence.
People often assume it without	noticing.
Example: A sky diver has two c	nutes. Let
E = {main chute doesn't open}	Pr (E) = 0.02
F = {backup doesn't open}	Pr (F) = 0.1
What is the chance that at lease independence?	one opens assuming
Note: Assuming independence assumption! Both chutes coul rare event, e.g. freezing rain.	

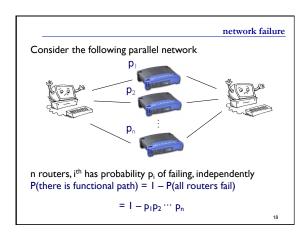


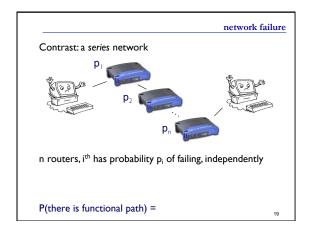


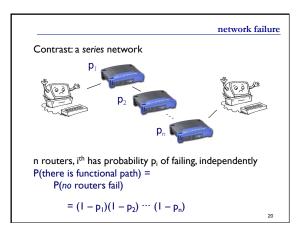


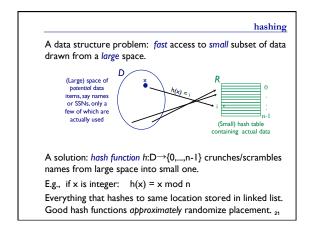


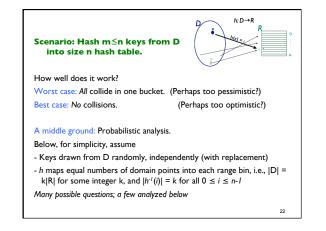


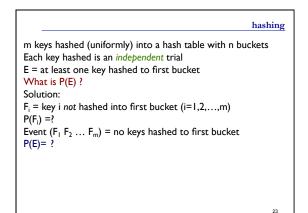


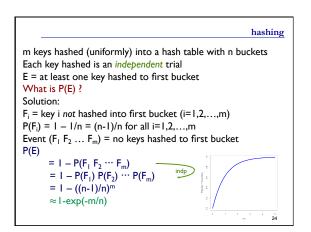






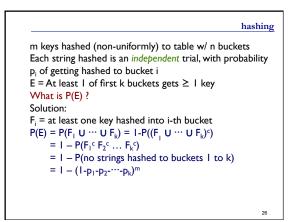


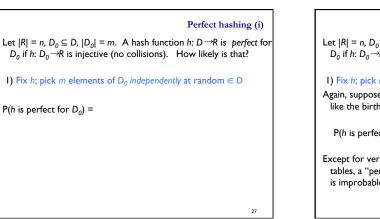




hashing

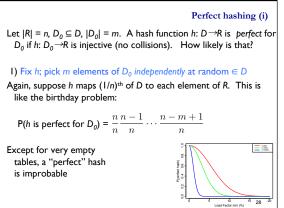
m keys hashed (non-uniformly) to table w/ n buckets Each string hashed is an *independent* trial, with probability p_i of getting hashed to bucket i $E = At \text{ least } I \text{ of first } k \text{ buckets gets } \geq I \text{ key}$ What is P(E) ? Solution: F_i = at least one key hashed into i-th bucket P(E) =





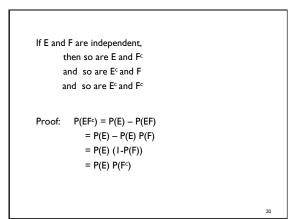
29

25



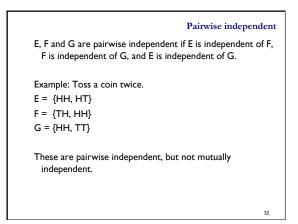
If E and F are independent, then so are E and F^c and so are E^c and Fand so are E^c and F^c

 $P(h \text{ is perfect for } D_0) =$



5

	Independence of several events	
Three events E, F, G are mutually independent if		
$Pr(E \cap F) = Pr(E)Pr($	F)	
$Pr(F \cap G) = Pr(F)Pr($	G)	
$Pr(E \cap G) = Pr(E)Pr($	G)	
$Pr(E \cap F \cap G) = Pr(E$)Pr(F)Pr(G)	



Independence of several	events	
Three events E, F, G are mutually independent if		
$Pr(E \cap F) = Pr(E)Pr(F)$		
$Pr(F \cap G) = Pr(F)Pr(G)$		
$Pr(E \cap G) = Pr(E)Pr(G)$		
$Pr(E \cap F \cap G) = Pr(E)Pr(F)Pr(G)$		
If E, F and G are independent, then E will be independent of any event formed from F and G.		
Example: Show that E is independent of F U G. Pr (F U G E) = Pr (F E) + Pr (G E) - Pr (FG E) = Pr (F) + Pr (G) - Pr (EFG)/Pr(E) = Pr (F) + Pr (G) - Pr (FG)= Pr(F U G)		
	33	

