more on expectation

expectation

For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected value or mean, is

$$\mathsf{E}[X] = \Sigma_x x p(x) \; \Big)$$

average of random values, weighted by their respective probabilities

For the equally-likely outcomes case, this is just the average of the possible random values of X

For unequally-likely outcomes, it is again the average of the possible random values of X, weighted by their respective probabilities

Ex 1: Let X = value seen rolling a fair die
$$p(1), p(2), ..., p(6) = 1/6$$

 $E[X] = \sum_{i=1}^{6} ip(i) = \frac{1}{6}(1 + 2 + \dots + 6) = \frac{21}{6} = 3.5$
Ex 2: Coin flip; X = +1 if H (win \$1), -1 if T (lose \$1)
 $E[X] = (+1) \cdot p(+1) + (-1) \cdot p(-1) = 1 \cdot (1/2) + (-1) \cdot (1/2) = 0$

				exp	oectatio	n of a ran	dom varia	ble
Тw	o equivale	nt way	vs to comp	oute expe	tation:			
١.	E(X)	=	$\sum_{Range(X)}$	kPr(X)	=k)			
2.	E(X)	$=\sum_{\omega\in \mathbb{Z}}$	$\sum_{w \in S} X(w).$	Pr(w)				
Ex	ample:	X =	number o	f people v	/ho get tl	neir homew	ork back	
Prob	outcome	x						
 1/6	 123	3						
1/6	132	1						
1/6	213	1						
1/6	231	0						
1/6	312	0						
1/6	321	1						3

1

			expectation of a function of a random variable
Calcu	ulating E[g(X)]	:
Y=g	g(X) is a r	new r	<pre>:v. Calculate P[Y=j], then apply defn:</pre>
X = 1	number of p	people	who get their homework back
Y = ;	$g(X) = X^2 n$	nod 2	
·			$E(g(X)) = \sum_{j \in Range(g(X))} jPr(g(X) = j)$
Prob	outcome	х	$= \sum_{k \in Range(X)} g(k) Pr(X = k)$
=====	100	===	
1/6	132	3	
1/6 1/6	213 231	1 0	
1/6 1/6	312 321	0 1	

4

A & B each bet \$1, then flip 2 coins:	HH A wins \$2
	HT Each takes
	TT B wins \$2
Let X be A's net gain: +1, 0, -1, resp.:	P(X = +1) = 1/4
	P(X = 0) = 1/2
What is E[X]?	P(X = -1) = 1/4
$E[X] = \cdot /4 + 0 \cdot /2 + (-1) \cdot /4 =$	= 0
What is F[X ²]?	Big Deal Note
	$E[X^2] \neq E[\lambda]$
$E[X^2] = \frac{12 \cdot 1}{4} + \frac{02 \cdot 1}{2} + \frac{(-1)^2 \cdot 1}{4}$	f = 1/2