
Distinct Elements and Homework 8

December 1, 2016

Problem

We are given a sequence of elements S = {a1, . . . , aT}. These elements are arriving one
at a time, and as each arrives, we can do a bit of computation. Suppose that each ai is a
nonnegative 128 bit integer. We want to estimate the number n of distinct elements in the
sequence in constant time and space. (Think of T as being astronomically large and the
number of distinct elements may also be extremely huge.)

For example if S = {32, 5, 17, 32, 14, 5, 17, 5, 32, 17}, then n, the number of distinct ele-
ments, is 4.

1 An idea

Suppose that we had a hash function h that maps each 128 bit integer to a uniformly random
real number in [0, 1]. Define

Y := min
1≤i≤T

h(ai).

Notice that as each ai ”arrives”, Y can be updated in constant time and the total space used
is constant.

For example, if h(32) = 0.43, h(5) = 0.19, h(17) = 0.85 and h(14) = 0.61, then Y would
be equal to 0.19 at the end of the process.

The ingenious idea is the following: If there are n distinct elements in the sequence (and
remember that the algorithm does not know n), then1

E(Y ) =
1

n+ 1
. (1.1)

Problem 1: Prove displayed equation (1.1).

Thus, if we computed Y , a natural way to estimate n would be to output

n :=
1

Y
− 1.

1 See the last section below for a start on how you would prove this.
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(In our example above, that would mean that our estimate for n would be 1/0.19−1 = 4.26,
which is not bad..)

This would work superbly if we could guarantee that Y was close to its expectation.
Unfortunately, this is not the case. For example, if Y was likely to be less than say 0.03,
then the above estimate of n would be roughly 32, which is pretty far off!

In particular, the variance of Y is approximately

V ar(Y ) ≈ 1

(n+ 1)2
, (1.2)

so the standard deviation is basically equal to the expectation.

Problem 2: Compute the variance of Y exactly. (You may need to use integration by
parts.)

In general it can be very likely for a random variable to be more than one standard
deviation from its mean.

How can we improve the quality of our estimate?
Repetition!!!!

2 Streaming Algorithm for estimating the number of

distinct elements

Construct k hash functions h1, . . . , hk, where each one independently maps each 128 bit
integer to a uniformly random real number in [0, 1]. Define

Yj := min
1≤i≤T

hj(ai).

As above

E(Yj) =
1

n+ 1
and V ar(Yj) ≈

1

(n+ 1)2
.

Henceforth, we will pretend that this estimate for the variance is exact. (Do the same on all
remaining homework problems.) Define

X :=
1

k

k∑
j=1

Yj.

Then

E(X) =
1

n+ 1
and V ar(X) =

1

k(n+ 1)2
. (2.1)

In other words, we’ve reduced the variance by a factor of k.
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Problem 3: Suppose that W1, . . . ,Wk are independent random variables that each have
mean µ and variance σ2. Let

W :=
1

k

k∑
i=1

Wi.

Compute the expectation and variance of W in terms of µ and σ. Then apply your result
to get displayed equation (2.1). (The answer to this question should be about 2 sentences
long.)

We will use as our estimate for n

n̂ :=
1

X
− 1.

2.1 Analysis

We will use the following tail bound known as Chebychev’s inequality.

Theorem 2.1. Let W be a random variable with mean µ and variance σ2. Then

Pr(|W − µ| ≥ c σ) ≤ 1

c2
.

For a proof, see http://inst.eecs.berkeley.edu/~cs70/sp16/notes/n18.pdf. Hope-
fully, I will also do this in class next week.

Let’s apply Chevychev’s inequality to our random variable X. Recall that

X :=
1

k

k∑
j=1

Yj.

We have

E(X) =
1

n+ 1
and σ(X) =

1√
k(n+ 1)

.

so if we want to know

Pr(
∣∣∣X − 1

n+ 1

∣∣∣ ≥ ε

n+ 1
)

we should set
c σ(X) =

c√
k(n+ 1)

=
ε

n+ 1
,

or equivalently
c = ε

√
k.

Thus,

Pr

(∣∣∣X − 1

n+ 1

∣∣∣ ≥ ε

n+ 1

)
≤ 1

c2
=

1

ε2k
.

We can play with these parameters to decide how good an approximation we want with what
probability.
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2.1.1 Example

If we want ε = 0.1 and 90% chance of success, we take ε2k = 10, i.e.

k = 1000.

This gives us that with 1000 hash functions

Pr

(∣∣∣X − 1

n+ 1

∣∣∣ ≥ 0.1

n+ 1

)
≤ 1

10
.

I.e.,

X ∈
[

0.9

n+ 1
,

1.1

n+ 1

]
with probability 0.9, or equivalently

n+ 1 ∈
[

0.9

X
,
1.1

X

]
with probability 0.9. Thus, we are 90% confident that

1

X

is within 10% of the true value of n + 1. This is what they call a “confidence interval” in
statistics.)

Problem 4: Use Chebychev’s inequality to show that if k = 400, then the probability
that

X ∈ 1

(n+ 1)

(
1± 1

10

)
is at least 0.75.

Problem 5: Use the result of problem 4 to show that estimating n as

n̂ :=
1

X
− 1

guarantees that

n̂ ∈
[

9

11
n,

11

9
n

]
with probability at least 0.75. (Note that these calculations are crude.)
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2.2 Using the Central Limit Theorem instead

The Central Limit Theorem is one of the most important results in probability theory. It says
that if X1, . . . , Xn are independent, identically distributed, each with mean µ and variance
σ2, then

∑n
i=1Xi is approximately normal with mean nµ and variance nσ2. More formally,

Z =

∑n
i=1Xi − nµ√

nσ

approaches a N(0, 1) random variable as n→∞. We can also say that

1

n

n∑
i=1

Xi ∼ N

(
µ,
σ2

n

)
.

For some more details see page 11 here: http://inst.eecs.berkeley.edu/~cs70/

sp16/notes/n20.pdf

Applying the Central Limit Theorem to our random variable X above implies that X is
approximately normal with mean 1/(n+ 1) and variance 1/[k(n+ 1)2].

Suppose that Z is a N(0, 1) random variable. For what α is it true that

Pr(|Z| > α) = 0.1?

Using our normal tables, the answer is approximately α = 1.64. Thus, if X is normal with
the appropriate mean and variance

Pr

(∣∣∣X − 1

n+ 1

∣∣∣ ≥ 1.64√
k(n+ 1)

)
=

1

10
. (2.2)

Problem 6: Prove the displayed equation (2.2).

If we want

Pr

(∣∣∣X − 1

n+ 1

∣∣∣ ≥ ε

n+ 1

)
=

1

10

for ε = 0.1, then it suffices to take
1.64√
k

= 0.1

or

k =

(
1.64

0.1

)2

≈ 268.

Problem 7: As in the preceding discussion, suppose, by the Central Limit Theorem, that
X is well approximated by a normal distribution with the appropriate mean and variance.
For what k (as a function of ε) is

X ∈ 1

(n+ 1)
(1± ε) (2.3)
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with probability at least 0.95? What answer do you get for ε = 0.05? For these choices if
X = 0.00015, what would be the estimate of n the algorithm would output (i.e., the value
of (1/X)− 1)? For these choices you can conclude that

Pr

(
n ∈

(
1

X
− 1± err

))
≥ 0.95,

where err is called the margin of error. What is the value of err you get and what is the
probability of failure, i.e.

Pr

(
n 6∈

(
1

X
− 1± err

))
?

2.3 Don’t forget

Don’t forget that there are a couple more homework problems here: https://courses.cs.
washington.edu/courses/cse312/16au/hw/hw8.pdf

More

For more on this and related topics, see these lecture notes:
http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/slidesS14/stream.

pdf

http://www.cs.princeton.edu/courses/archive/fall14/cos521/lecnotes/lec1.pdf

http://www.cs.princeton.edu/courses/archive/fall14/cos521/lecnotes/lec3.pdf

http://www.cs.princeton.edu/courses/archive/fall14/cos521/lecnotes/lec5.pdf

3 Calculations

Suppose that U1, . . . , Un are independent U [0, 1] random varaibles, and let

Y := min(U1, . . . , Un).

Then

FY (y) = Pr(Y ≤ y) = 1− Pr(Y > y)

= 1−
n∏

i=1

Pr(Ui > y) = 1− (1− y)n y ∈ [0, 1].

You can now compute fY (y) by differentiating the CDF FY (y).
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