

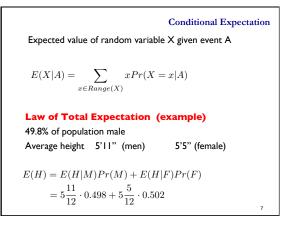
$$\begin{aligned} & \text{Conditional distributions} \\ & \text{Let X and Y be discrete r.v.s.} \\ & \text{Conditional probability mass function of X given that Y=y} \\ & p_{X|Y}(x|y) = Pr(X = x|Y = y) \\ & = \frac{Pr(X = x, Y = y)}{Pr(Y = y)} = \frac{p(x, y)}{p_Y(y)} \\ & \sum_x p_{X|Y}(x|y) = ? \\ & \sum_x p_{X|Y}(x|y) = \sum_x \frac{p(x, y)}{p_Y(y)} = \frac{p_Y(y)}{p_Y(y)} = 1 \end{aligned}$$

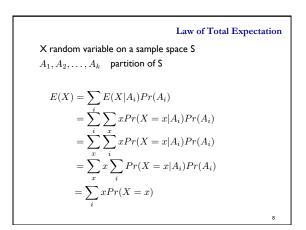
$$\begin{aligned} & \text{Conditional distributions} \\ & p_{X|Y}(x|y) = Pr(X=x|Y=y) \end{aligned}$$
 If X and Y are independent Poisson random variables with respective parameters λ_1 and λ_2 , calculate the conditional distribution of X, given that X + Y = n. \end{aligned}
$$P(X=k|X+Y=n) = \frac{P(X=k,X+Y=n)}{P(X+Y=n)} \\ &= \frac{P(X=k,Y=n-k)}{P(X+Y=n)} \\ &= \frac{P(X=k)P(Y=n-k)}{P(X+Y=n)} \end{aligned}$$

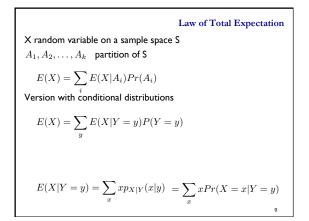
Sum of Poisson random variables is Poisson

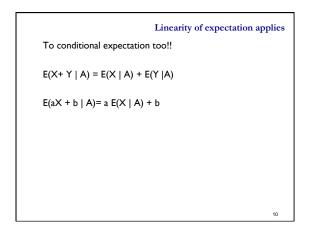
$$X \sim Poi(\lambda_1) \qquad Y \sim Poi(\lambda_2)$$
Show that $X + Y \sim Poi(\lambda_1 + \lambda_2)$
Proof: $P(X + Y = n) = \sum_{k=0}^{n} P(X = k, Y = n - k)$
 $= \sum_{k=0}^{n} P(X = k)P(Y = n - k)$
 $= \sum_{k=0}^{n} e^{-\lambda_k} \frac{\lambda_k^k}{k!} \cdot e^{-\lambda_2} \frac{\lambda_k^{n-k}}{(n-k)!}$
 $= e^{-(\lambda_1 + \lambda_2)} \sum_{k=0}^{n} \frac{\lambda_k^k \lambda_k^{n-k}}{k!(n-k)!}$
 $= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_k^k \lambda_2^{n-k}$
 $= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_k^k \lambda_2^{n-k}$

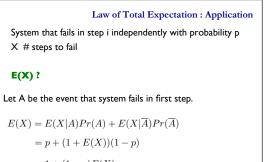
$$\begin{aligned} & \text{Conditional distributions} \\ & \text{If X and Y are independent Poisson random variables with} \\ & \text{respective parameters } \lambda_1 \text{ and } \lambda_2, \text{ calculate the conditional} \\ & \text{distribution of X, given that X + Y = n.} \\ & \frac{P(X=k)P(Y=n-k)}{P(X+Y=n)} = \frac{e^{-\lambda_1 \frac{\lambda_1^k}{k!}}e^{-\lambda_2 \frac{\lambda_2^{n-k}}{(n-k)!}}}{e^{-(\lambda_1+\lambda_2) \frac{(\lambda_1+\lambda_2)^n}{n!}}} \\ & = \binom{n}{k} \frac{\lambda_1^k}{(\lambda_1+\lambda_2)^k} \cdot \frac{\lambda_2^{n-k}}{(\lambda_1+\lambda_2)^{n-k}} \\ & \text{The conditional distribution of X, given that X+Y=n is:} \\ & \text{Binomial (n, } \frac{\lambda_1}{(\lambda_1+\lambda_2)}) \end{aligned}$$











$$= 1 + (1 - p)E(X)$$
$$E(X) = \frac{1}{p}$$

Law of Total Expectation : Example
A miner is trapped in a mine containing 3 doors.
D₁: The 1st door leads to a tunnel that will take him to safety after 3 hours.
D₂: The 2nd door leads to a tunnel that returns him to the mine after 5 hours.
D₃: The 3rd door leads to a tunnel that returns him to the mine after a number of hours that is Binomial with parameters (12, 1/3).
At all times, he is equally likely to choose any one of the doors.
E(time to reach safety) ?

12

Law of Total Expectation : Example A miner is trapped in a mine containing 3 doors. D₁: The 1st door leads to a tunnel that will take him to safety after 3 hours. D₂: The 2nd door leads to a tunnel that returns him to the mine after 5 hours. D₃: The 3rd door leads to a tunnel that returns him to the mine after a number of hours that is Binomial with parameters (12, 1/3). At all times, he is equally likely to choose any one of the doors. E(time to reach safety) ?

11

13

$$E(T) = E(T|D_1)\frac{1}{3} + E(T|D_2)\frac{1}{3} + E(T|D_3)\frac{1}{3}$$

= $3 \cdot \frac{1}{3} + 5 \cdot \frac{1}{3} + (4 + E(T)) \cdot \frac{1}{3}$
 $E(T) = 6$

Problem

The number of people who enter an elevator on the ground floor is a Poisson random variable with mean 10. If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where the others get off, compute the expected number of stops that the elevator will make before discharging all the passengers.

14

16

Problem

The number of people who enter an elevator on the ground floor is a Poisson random variable with mean 10. If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where the others get off, compute the expected number of stops that the elevator will make before discharging all the passengers.

X number of people who enter
Y number of stops
$$Pr(X = k) = e^{-10} \frac{10^k}{k!}$$

$$E(Y) = \sum_{k=0}^{\infty} E(Y|X = k)P(X = k)$$

$$E(Y|X = k) = E(Y_1 + \dots + Y_N|X = k)$$

$$Y_i \text{ indicates a stop on floor i}$$

$$E(Y_i|X = k) = \left(1 - (1 - 1/N)^k\right)$$
15

Game of Craps

- Begin by rolling an ordinary pair of dice
- If the sum of dice is 2, 3 or 12, the player loses
- If the sum of dice is 7 or 11, the player wins
- If it is any other number, say k, the player continues to roll the dice until the sum is either 7 or k.
 - If it is 7, the player loses.
 - If it is k, the player wins.

Let R denote the number of rolls of the dice in a game of craps.

• What is E(R)?