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Conditional distributions, conditional expectation 
and the law of total expectation.
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Conditional distributions 

Let X and Y be discrete r.v.s. 

Conditional probability mass function of X given that Y=y
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pX|Y (x|y) = Pr(X = x|Y = y)

=
Pr(X = x, Y = y)
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=
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Conditional distributions 
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pX|Y (x|y) = Pr(X = x|Y = y)

If X and Y are independent Poisson random variables with 
respective parameters       and       , calculate the conditional 
distribution of X, given that X + Y = n.

�1 �2

P (X = k|X + Y = n) =
P (X = k,X + Y = n)

P (X + Y = n)

=
P (X = k, Y = n� k)

P (X + Y = n)

=
P (X = k)P (Y = n� k)

P (X + Y = n)

Sum of Poisson random variables is Poisson 
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X ⇠ Poi(�1) Y ⇠ Poi(�2)

X + Y ⇠ Poi(�1 + �2)Show that
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The conditional distribution of X, given that X+Y=n is:
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(�1 + �2)

=

✓
n

k

◆
�k
1

(�1 + �2)k
· �n�k

2

(�1 + �2)n�k

Conditional Expectation 

Expected value of random variable X given event A
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E(X|A) =
X

x2Range(X)

xPr(X = x|A)

Law of Total Expectation  (example)
49.8% of population male

Average height    5’11’’  (men)           5’5’’ (female)

E(H) = E(H|M)Pr(M) + E(H|F )Pr(F )

= 5
11

12
· 0.498 + 5

5

12
· 0.502
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Law of Total Expectation 

X random variable on a sample space S

                          partition of S
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Law of Total Expectation 

X random variable on a sample space S

                          partition of S

Version with conditional distributions

9 

A1, A2, . . . , Ak

E(X) =
X

i

E(X|Ai)Pr(Ai)

E(X) =
X

y

E(X|Y = y)P (Y = y)

E(X|Y = y) =
X

x

xp

X|Y (x|y) =
X

x

xPr(X = x|Y = y)

Linearity of expectation applies 

To conditional expectation too!!

E(X+ Y | A) = E(X | A) + E(Y |A)

E(aX + b | A)= a E(X | A) + b
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Law of Total Expectation : Application 

System that fails in step i independently with probability p

X  # steps to fail

E(X) ?
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Let A be the event that system fails in first step.

E(X) = E(X|A)Pr(A) + E(X|A)Pr(A)

= p+ (1 + E(X))(1� p)

= 1 + (1� p)E(X)

E(X) =
1

p

Law of Total Expectation : Example 

A miner is trapped in a mine containing 3 doors.

•  D1: The 1st  door leads to a tunnel that will take him to safety after 3 
hours.

•  D2: The 2nd door leads to a tunnel that returns him to the mine after 5 
hours.

•  D3: The 3rd door leads to a tunnel that returns him to the mine after a 
number of hours that is Binomial with parameters (12, 1/3).

At all times, he is equally likely to choose any one of the doors.

E(time to reach safety) ?
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E(T ) = E(T |D1)
1

3
+ E(T |D2)

1

3
+ E(T |D3)

1

3

= 3 · 1
3
+ 5 · 1

3
+ (4 + E(T )) · 1

3

E(T ) = 6
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Problem 

The number of people who enter an elevator on the ground floor 
is a Poisson random variable with mean 10. If there are N floors 
above the ground floor, and if each person is equally likely to get 
off at any one of the N floors, independently of where the others 
get off, compute the expected number of stops that the elevator 
will make before discharging all the passengers.
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X number of people who enter

Y number of stops

E(Yi|X = k) =
�
1� (1� 1/N)k

�
Yi indicates a stop on floor i

E(Y |X = k) = E(Y1 + . . .+ YN |X = k)

Pr(X = k) = e�10 10
k

k!

E(Y ) =
1X

k=0

E(Y |X = k)P (X = k)

Game of Craps 

•  Begin by rolling an ordinary pair of dice

•  If the sum of dice is 2, 3 or 12, the player loses

•  If the sum of dice is 7 or 11, the player wins

•  If it is any other number, say k,  the player continues to 
roll the dice until the sum is either 7 or k.
•  If it is 7, the player loses.
•  If it is k, the player wins.

Let R denote the number of rolls of the dice in a game of 
craps.
•  What is E(R)?
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