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Programming Project: Spam Filter

Due: Thursday, November 10, 11:59pm

• Implement the Naive Bayes classifier for classifying emails as either 
spam or ham.

• You may use C, Java, Python, or R; ask if you have a different 
preference. We’ve provided starter code in Java and Python.

• Read Jonathan’s notes, start early, and ask for help if you get stuck!



Spam vs. Ham

• (at least in the past) the bane of 
any email user’s existence

• You know it when you see it!

• Easy for humans to identify, but 
not necessarily easy for 
computers

• Less of a problem for consumers 
now, because spam filters have 
gotten really good…



The spam classification problem

• Input: collection of emails, already labelled spam or ham
• Someone has to label these by hand!

• Usually called the training data

• Use this data to train a model that “understands” what 
makes an email spam or ham
• We’re using a Naïve Bayes classifier, but there are other 

approaches

• This is a Machine Learning problem (take 446 for more!)

• Test your model on emails whose label isn’t known to the 
model, and see how well it does
• Usually called the test data



Naïve Bayes in the real world

• One of the oldest, simplest models for classification

• Still, very powerful and used all the time in the real world/industry
• Identifying credit card fraud

• Identifying fake Amazon reviews

• Identifying vandalism on Wikipedia

• Still used (with modifications) by Gmail to prevent spam 

• Facial recognition

• Categorizing Google News articles

• Even used for medical diagnosis!



How do we represent an email?

SUBJECT: Top Secret Business Venture

Dear Sir. 

First, I must solicit your confidence in 
this transaction, this is by virture of its 
nature as being utterly confidencial and 
top secret…

(top, secret, business, venture, dear, sir, first, I, 
must, solicit, your, confidence, in, this, 
transaction, is, by, virture, of, its, nature, as, 
being, utterly, confidencial, and)

• There’s a lot of different things about emails that might give a 
computer a hint about whether or not it’s spam
• Possible features: words in body, subject line, sender, message header, time 

sent…

• For this assignment, we choose to represent an email just as the set 
of distinct words (𝑥1, 𝑥2, … , 𝑥𝑛) in the subject  and body

Notice that there are no duplicate words!



Naïve Bayes in theory

The concepts behind Naïve Bayes are nothing new to you -- we’ll be 
using what we’ve learned in the past few weeks. 

Specifically

• Bayes Theorem

𝑃 𝐴 𝐵 =
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃(𝐵)

• Law of Total Probability

𝑃(𝐴) =  𝑛𝑃 𝐴 𝐵𝑛 𝑃(𝐵𝑛)

• Chain Rule
𝑃 𝐴1, … , 𝐴𝑛 =
𝑃 𝐴1 𝑃 𝐴2 𝐴1 …𝑃 𝐴𝑛 𝐴𝑛−1…𝐴1

• Conditional Independence

𝑃 𝐴 ∩ 𝐵 𝐶 = 𝑃 𝐴 𝐶 𝑃(𝐵|𝐶)• Conditional Probability

𝑃 𝐴|𝐵 =
𝑃 𝐴∩𝐵

𝑃(𝐵)



• Take the set of distinct words (𝑥1, 𝑥2, … , 𝑥𝑛) to represent the text in an 
email.

• We are trying to compute 

𝑃 𝑆𝑝𝑎𝑚 𝑥1, 𝑥2, … , 𝑥𝑛 = ? ? ?

• By applying Bayes Theorem, we can reverse the conditioning. It’s easier to 
find the probability of a word appearing in a spam email than the reverse.

𝑃 𝑆𝑝𝑎𝑚 𝑥1, 𝑥2, … , 𝑥𝑛 =
𝑃 𝑥1, 𝑥2, … 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃(𝑆𝑝𝑎𝑚)

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)

=
𝑃 𝑥1, 𝑥2, … 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃(𝑆𝑝𝑎𝑚)

𝑃 𝑥1, 𝑥2, … 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃 𝑆𝑝𝑎𝑚 + 𝑃 𝑥1, 𝑥2, … 𝑥𝑛 𝐻𝑎𝑚 𝑃(𝐻𝑎𝑚)



• Let’s take a look at the numerator and apply the rule for Conditional 
Probability

𝑃 𝑥1, 𝑥2, … 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃 𝑆𝑝𝑎𝑚 = 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚)

• And now let’s use the Chain Rule to decompose this

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚 = 𝑃 𝑥1 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚 𝑃(𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚)

= 𝑃 𝑥1 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚 𝑃(𝑥2|𝑥3, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚)𝑃(𝑥3, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚)

= ⋯

= 𝑃 𝑥1 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚 …𝑃 𝑥𝑛−1 𝑥𝑛, 𝑆𝑝𝑎𝑚 𝑃 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃(𝑆𝑝𝑎𝑚)

But this is still hard to compute. 



• Let’s simplify the problem with an assumption.

• We will assume that the words in the email are conditionally independent 
of each other, given that we know whether or not the email is spam.

• This is why we call this Naïve Bayes. This isn’t true irl! 

• So how does this help?

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚
= 𝑃 𝑥1 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚 …𝑃 𝑥𝑛−1 𝑥𝑛, 𝑆𝑝𝑎𝑚 𝑃 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃(𝑆𝑝𝑎𝑚)

≈ 𝑃 𝑥1 𝑆𝑝𝑎𝑚 𝑃(𝑥2|𝑆𝑝𝑎𝑚)…𝑃 𝑥𝑛−1 𝑆𝑝𝑎𝑚 𝑃 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃(𝑆𝑝𝑎𝑚)

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚) ≈ 𝑃(𝑆𝑝𝑎𝑚) 

𝑖=1

𝑛

𝑃(𝑥𝑖|𝑆𝑝𝑎𝑚)



• So we know that

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚) ≈ 𝑃(𝑆𝑝𝑎𝑚) 

𝑖=1

𝑛

𝑃(𝑥𝑖|𝑆𝑝𝑎𝑚)

• Similarly

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛, 𝐻𝑎𝑚) ≈ 𝑃(𝐻𝑎𝑚) 

𝑖=1

𝑛

𝑃(𝑥𝑖|𝐻𝑎𝑚)

• Putting it all together

𝑃 𝑆𝑝𝑎𝑚 𝑥1, 𝑥2, … , 𝑥𝑛 ≈
𝑃(𝑆𝑝𝑎𝑚) 𝑖=1

𝑛 𝑃(𝑥𝑖|𝑆𝑝𝑎𝑚)

𝑃 𝑆𝑝𝑎𝑚  𝑖=1
𝑛 𝑃 𝑥𝑖 𝑆𝑝𝑎𝑚 + 𝑃(𝐻𝑎𝑚) 𝑖=1

𝑛 𝑃(𝑥𝑖|𝐻𝑎𝑚)



How spammy is a word?

• Have a nice formula for email spam probability, using conditional 
probabilities of words given ham/spam

• 𝑃 𝑆𝑝𝑎𝑚 and 𝑃(𝐻𝑎𝑚) are just the proportion of total emails that 
are spam and ham 

• What is 𝑃(𝑣𝑖𝑎𝑔𝑟𝑎|𝑆𝑝𝑎𝑚) asking?

• Would be easy to just count up how many spam emails have this 
word in them, so

𝑃 𝑤 𝑆𝑝𝑎𝑚 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑤

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠
(maybe)

• This seems reasonable, but there’s a problem…



• Suppose the word Pokemon only ever showed up in ham emails in the 
training data, never in spam

𝑃 𝑃𝑜𝑘𝑒𝑚𝑜𝑛 𝑆𝑝𝑎𝑚 = 0

• Since the overall spam probability is the product of a bunch of 
individual probabilities, if any of those is 0, the whole thing is 0

• Any email with the word Pokemon would be assigned a spam 
probability of 0

• What can we do?

SUBJECT: Get out of debt!

Cheap prescription pills! Earn fast cash 
using this one weird trick! Meet singles 
near you and get preapproved for a low 
interest credit card! Pokemon

definitely not spam, right?



Laplace smoothing

• Crazy idea: what if we pretend we’ve seen 
every outcome once already?

• Pretend we’ve seen one more spam email
with 𝑤, one more without 𝑤

𝑃 𝑤 𝑆𝑝𝑎𝑚 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑤 + 1

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠 + 2

• Then, 𝑃 𝑃𝑜𝑘𝑒𝑚𝑜𝑛 𝑆𝑝𝑎𝑚 > 0

• No one word can “poison” the overall
probability too much

• General technique to avoid assuming that
unseen events will never happen


