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14. hypothesis testing



competing hypotheses

Programmers using the Eclipse IDE make fewer errors
(a) Hooey. Errors happen, IDE or not.

(b) Yes. On average, programmers using Eclipse
produce code with fewer errors per thousand
lines of code



competing hypotheses

Black Tie Linux has way better web-server throughput
than Red Shirt.

(@) Ha! Linux is linux, throughput will be the same

(b) Yes. On average, Black Tie response time is 20%
faster.



competing hypotheses

This coin is biased!

(a) “Don’t be paranoid, dude. It’s a fair coin, like any
other, P(Heads) = [/2”

(b) “Wake up, smell coffee: P(Heads) = 2/3, totally!”



competeing hypotheses

(a) Ibsoff.com sells diet pills. 10 volunteers used them for
a month, reporting the net weight changes of:

x <- c(-1.5, o, .1, -0.5, -.25, 0.3, .1, .05, .15, .05)
> mean(x)

Ibsoff proudly announces “Diet Pill Miracle! See data!” —

(b) Dr. Gupta says “Bunk!”



competing hypotheses

Does smoking cause” lung cancer?

(a) No;we don’t know what causes cancer, but
smokers are no more likely to get it than non-
smokers

(b) Yes;a much greater % of smokers get it

"Notes: (1) even in case (b),“cause” is a stretch, but for
simplicity, “causes” and “correlates with” will be loosely
interchangeable today. (2) we really don’t know, in
mechanistic detail, what causes lung cancer, nor how smoking
contributes, but the statistical evidence strongly points to
smoking as a key factor.

Our question: How to do the statistics?



competing hypotheses

How do we decide?
Design an experiment, gather data, evaluate:

In a sample of N smokers + non-smokers, does %
with cancer differ! Age at onset! Severity!

In N programs, some written using IDE, some not, do
error rates differ?

Measure response times to N individual web
transactions on both.

In N flips, does putatively biased coin show an unusual
excess of heads! More runs! Longer runs!?

A complex, multi-faceted problem. Here, emphasize evaluation:
What N? How large of a difference is convincing?



hypothesis testing

General framework: Example:
|. Data 100 coin flips
2. Ho — the “null hypothesis” P(H) = 1/2
3. Hi — the “alternate hypothesis”  P(H) = 2/3
4. A decision rule for choosing “if #H < 60, accept

between Ho/H| based on data  null, else reject null”

5. Analysis: What is the probability PH < 60| 1/2)="
that we get the right answer? P(H > 60|2/3)=?

By convention, the null hypothesis is usually the “simpler” hypothesis, or “prevailing
wisdom.” E.g., Occam’s Razor says you should prefer that, unless there is strong
evidence to the contrary.



error types

ey STy ST >
rejection region

decision
> threshold
), 4
O :
LSS
0.5 0.6 0.67  observed fract of heads—
Type |l error:false accept; Type | error:false reject;
accept Ho when it is false. reject Ho when it is true.
B = P(type Il error) x = P(type | error)

Goal: make both &, B small (but it’s a
tradeoff; they are interdependent).
X < 0.05 common in scientific literature.




decision rules

Is coin fair (1/2) or biased (2/3)? How to decide! Ideas:

|. Count: Flip 100 times; if number of heads observed

is < 60, accept Ho
or <59 or < 6l ..= different error rates

2. Runs:  Flip 100 times. Did | see a longer run of
heads or of tails?

3. Runs:  Flip until | see either 10 heads in a row
(reject Ho) or 10 tails is a row (accept Ho)

4. Almost-Runs; As above, but 9 of 10 in a row
5. ...

Limited only by your ingenuity and ability to analyze.
But how will you optimize Type |, Il errors?



likelihood ratio tests

A generic decision rule: a “Likelihood Ratio Test”

L | HY) < ¢ accept Hy

L(:Clyaj27 .. .. — b
e = ¢ arbitrary
L(CBl, Loy ...y Ip ’ HO) > C reject Hy

E.g.:

c = |:accept Ho if observed data is more likely
under that hypothesis than it is under the
alternate, but reject Ho if observed data is
more likely under the alternate

¢ = 5:accept Ho unless there is strong evidence
that the alternate is more likely (i.e., 5%)

Changing c shifts balance of Type | vs Il errors, of course



example

Given: A coin, either fair (p(H)=1/2) or biased (p(H)=2/3)
Decide: which

How!? Flip it 5 times. Suppose outcome D = HHHTH
Null Model/Null Hypothesis My: p(H) = 1/2

Alternative Model/Alt Hypothesis M,: p(H) = 2/3

Likelihoods:
P(D | Mo) = (172) (172) (1/2) (112) (1/2) = 1/32
P(D | M,) = (2/3) (2/3) (2/3) (1/3) (2/3) = 16/243

Likelihood Ratio: PP 1M1) _ 16/243 _ 512 _ 9 1
p(DIM ) 1/32 243 ’

l.e., alt model is = 2.1% more likely than null model, given data



more jargon: simple vs composite hypotheses

A simple hypothesis has a single, fixed parameter value
E.g.. P(H)=1/2

A composite hypothesis allows multiple parameter
values

E.g.; P(H) > 1/2

Note that LRT is problematic for composite hypotheses; which
value for the unknown parameter would you use to compute its
likelihood?



Neyman-Pearson lemma

The Neyman-Pearson Lemma

If an LRT for a simple hypothesis Ho versus a simple
hypothesis H| has error probabilities &, 3, then any test

with type | error &’ < & must have type Il error f’ = P
(and if &’ < &, then B’ > B)

In other words, to compare a simple hypothesis to a
simple alternative, a likelihood ratio test is as good as any
for a given error bound.



example

Ho: P(H) = 1/2 Data: flip 100 times

Hi:P(H) = 2/3 | Decision rule: Accept Ho if #H < 60
X = P(Type | err) = P(#H > 60 | Ho) =~ 0.018

B =P(Type ll err) = P(#H < 60 | H|) = 0.097

L(59 heads | Hy) _L(60 heads | Hy) ~L(61 heads | Hy)

~ 14, ~ 2.8, ~ .
L(59 heads | Hy) L(60 heads | Hy) 5 L(61 heads | Hy) o
H ' 100,2
L(60 heads | Hy) _ db!nom(60, 00,2/3) ~ 9 835788
L(60 heads | Hy)  dbinom(60,100,1/2)
1 “R” pmf/pdf functions
L(60 h H d 60,100 -2/3,./100-2/3-1/3

L(60 heads | Hy) ~ dnorm(60,100 - 1/2, /100 -1/2-1/2) E



example (cont.)
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some notes

Log of likelihood ratio is equivalent, often more
convenient

add logs instead of multiplying...
“Likelihood Ratio Tests”: reject null if LLR > threshold

LLR > O disfavors null, but higher threshold gives
stronger evidence against

Neyman-Pearson Theorem: For a given error rate, LRT
is as good a test as any (subject to some fine print).



summary

Null/Alternative hypotheses - specify distributions from which data
are assumed to have been sampled

Decision rule;“accept/reject null if sample data...”; many possible
Type | error:false reject/reject null when it is true

Type 2 error: false accept/accept null when it is false

Balance & = P(type | error) vs B = P(type 2 error) based on “cost” of each

Likelihood ratio tests: for simple null vs simple alt, compare ratio of
likelihoods under the 2 competing models to a fixed threshold.



Significance Testing

B&T 9.4



(:}\ (binary ) hypothesis testing

Qg/ 2 competing hypotheses Ho (the null), H (the alternate)
E.g., P(Heads) = 2 vs P(Heads) = 73
Gather data, X
Look at likelihood ratio mtaSial) ; is it > ¢!

L(X|Ho)
Type | error/false reject rate «;

Type |l error/false non-reject rate f3
Neyman-Pearson Lemma: no test will do better (for simple hyps)

Often the likelihood ratio formula can be massaged into an

equivalent form that’s simpler to use, e.g.
“Is #Heads > d?”

Other tests, not based on likelihood, are also possible, say
“Is hyperbolic arc sine of #Heads in prime positions > 42?”
but Neyman-Pearson still applies...



significance testing

What about more general problems, e.g. with composite

hypotheses!?
E.g., P(Heads) = /2 vs P(Heads) not = >

NB: LRT won’t work — can’t
calculate likelihood for “p# /4"

Can | get a more nuanced answer than accept/reject?

General strategy:
Gather data, X|, Xy, ..., X

Choose a real-valued summary statistic, S = h(Xi, Xy, ..., Xu)

Choose shape of the rejection region,e.g.R = {X | S > c}, c t.b.d.

Choose significance level & (upper bound on false rejection prob)

Find critical value c, so that, assuming Ho, P(S>c) < &

No Neyman-Pearson this time, but (assuming you can do or
approximate the math for last step) you now know the significance
of the result — i.e., probability of falsely rejecting the null model.
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example: fair coin or not?

| have a coin. Is P(Heads) = 2 or not?

General strategy: For this example:
Gather data, Xj, Xy, ..., Xi Flip n = 1000 times: X, ..., Xn
Choose a real-valued summary Summary statistic, S = # of
statistic, S = h(Xi, Xz, ..., Xn) heads in X, Xy, ..., X,
Choose shape of the rejection Shape of the rejection region:

region,e.g. R ={X|S>c},ctbd.| R={Xs.t.|S-n/2|> c}, ctb.d

Choose significance level & (upper | Choose significance level

bound on false rejection prob) x =0.05
Find critical value c, so that, Find critical value c, so that,
assuming Ho, P(S>c) < X assuming Ho, P(|S-n/2| > ¢) < &

Given Ho, (S-n/2)/sqrt(n/4) is = Norm(0,1), so ¢ = 1.96%1/250 =~ 3|
gives the desired 0.05 significance level.
E.g., if you see 532 heads in 1000 flips you can reject Ho at the 5%

significance level
22



p-values

The p-value of an experiment is:
p = min { & | Ho would be rejected at the & significance level }
l.e., observed S is right at the critical value for @ = p

l.e., p = prob of outcome as, or more, unexpected than observed
Why?
Shows directly your leeway w.r.t. any desired significance level.

Avoids pre-setting the significance level (pro/con)

Examples:
531 heads in 1000 flips has a p-value of 0.0537, > & = 0.05
532 heads in 1000 flips has a p-value of 0.0463, < x =0.05 onrandom:

it is or itisn’t

550 heads in 1000 flips has a p-value of 0.00173, « & = 0.05 /
It is not the probability that the null hypothesis is true

It’s the probability of seeing data this extreme, assuming null is true

23



example: is the mean zero or not (02 known)?

Suppose X ~ Normal(u, 0%), and 02 is known.

Ho:p=0 vs Hi:py+0
Data: X, Xo,..., X,

Summary statistic — want something related to mean; how about:

X1+ Xt Xy
B o\/n

(assuming Ho, 2X; has mean = 0,var = n 0%,s0 S ~ N(0,1))

S

If we make rejection region R = { X s.t. |S| > 1.96 }, this will reject
the null at the @ = 0.05 significance level. l.e., assuming y = 0, an
extreme sample with |S|>1.96 will be drawn only 5% of the time.

Similarly, if we observe S = 2.5, say, then p-value = 0.0124

24



example: the t-test: is the mean zero or not (0% unknown)?

Suppose X ~ Normal(u, 02),and 02 is unknown.

Ho:u=0 vs Hi:p#0

: n — 1
1=1 =1

S has a[t-distribution with n-| degrees of freedom

Look up desired values in t-tables (e.g., B&T p 473; see next slide). E.g.,

e
(Vy)
(())
>

e
(())

O

—

forn=10,use R ={xs.t. |S|>2.26}
}not|96
forn=31,use R={xs.t. |S|>2.04}

to obtain & = 0.05 significance level. E.g.,,n=10,5=3.25 = p-value = 0.0l

25



/2

[ |l 0100 0050 0025 0010 0005 0.001
1 || 3078 6.314 12}71 3182 63.66 3183

o |l 1.886 2920 4403 6965 9.925 22.33

3 [l 1.638 2.353 3482 4.541 5841 10.21

4 || 1.533 2132 2476 3.747 4604 7.173

5 [l 1.476 2015 2471 3365 4.032 5.893

6 || 1.440 1.943 2447 3.143 3707 5.208

7l 1.415 1.895 2. 2.098 3499  4.785

8 || 1.397 1.860 2.806 3.355 4.501
n-1 oy—s383 1833 2821 3250 4.297
10| 1.372 1812 2. 9.764 3.169 4.144

11 Il 1363 1.796 22p1 2718 3.106 4.025

12 Il 1.356 1.782 2.9 2.681 3.055 3.930

13 Il 1350 1771 2160 2.650 3.012 3.852

4 |l 1.345 1.761 2145 2624 2977  3.787

| 15 || 1341 1753 2431 2602 2947 3.733
2 || 1.325 1.725 2.845 3.552
n-|/ 30y1310 1697 2.750  3.385
60 |l 1.296 1.671 : 2.660  3.232
120 1.280 1.658 1.980 2.358 2.617 3.160
00 1.282 1.645 1.960 2.326 2.576  3.090

CDF W,.i(z) of the t-distribution w/ n-1 degrees of freedom
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example

Ibsoff.com sells diet pills. 10 volunteers used them for a
month, reporting the net weight changes of:

x <- c(-1.5, o0, .1, -0.5, -.25, 0.3, .1, .05, .15, .05)

> mean(x)
11Co.15>

Ibsoff proudly announces “Diet Pill Miracle!” —

> cat("stddev=",sd(x), "tstat=",sum(x)/sd(x)/sqrt(10))
stddev= 0.5244044 tstat= -0.904534

> t.test(x)

t = -0.9045, df = 9, p-value = 0.3893

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval: -0.5251363 0.2251363

What do you think?

27



significance testing — summary

Setup much like LRT case: Null Hp vs Alternate H; hypotheses;
Type | vs Type Il errors; & vs P

Especially useful for composite hyps (where LRT is problematic)
Formulate a test statistic, S = h(X|,..., X»)

Choose “rejection region” R, i.e., values of S that are too
unlikely under Ho to be credible, typically parameterized by
some constant ¢

Choose “significance level” & (e.g., 0.05), then calculate

threshold c s.t. rejection probability < &, and/or calculate p-
value of S = h(X,..., X;) i.e., probability of seeing data as
extreme as, or more extreme than observed.

Bottom line: data in rejection region, w/ low & and/or low p-
value, is very unlikely assuming Ho is true; hinting towards H;

Now that you get p-values: here’s an amusing/depressing story:

http://io9.com/i-fooled-millions-into-thinking-chocolate-helps-weight-1707251800
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CAN MY BOYFRIEND
COME ALONG?

\

IM NOT YOUR
BOYFRIEND!

[ You ToTALY ARE.

TM CASvALLY
DATING A NUMBER

OF PEOPLE.

K

BUT YOU SPEND TWICE AS MucH
TIME WITH ME AS WITH ANYONE
ELSE. IM ACLEAR OUTUER.

HH -
2 nava

YOUR MATH IS
IRREFUTABLE.

FACE IT—IM
YOUR STAMSNCALLY
SIGNIFICANT OTHER.

s




Something Completely
Different
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Gene expression Advance Access publication January 28, 2012

annroach to bias correction in RNA-Seq

Daniel C. Jones'+*

31



VA R 0Q g
Cells make RNA. Biologists “read” it
— a (biased!) random sampling process




RNA seq

Scale 2 kbt 1 hgl9
chr21: | 33,033,000 | 33,034,000 | 33,035,000 | 33,036,000 | 33,037,000 | 33,038,000 |g 33,039,000 | 33,040,000 | 33,041,000 |
2155 _ bodyMap2 FCA/s )

bodyMap2 FCA/s_1 ‘ ‘
o _dh ‘ L
L —

UCSC Genes (RefSeq,gniProt, CCDS, Rfam, tRNAs & Comparative Genomics)
SOD1 i} i

Scale 50 basest
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WWhat we expect:

Uniform Sampling
100 -

73 -
50 -
25 -

bl

[ [ [
0 50 100 150 200

Uniform sampling of 4000 “reads” across a 200 bp “exon.”
Average 20 £ 4.7 per position, min = 9, max =33
l.e., as expected, we see = U £ 30 in 200 samples

O_



What we get: highly non-uniform coverage

E.g., assuming uniform, the 8 peaks above 100 are > +100 above mean

Unadjusted
Counts

N ot bl

3’ exon

Apoa2 >——>r————>—>—> 200 nucleotides |
| | | |

chr1 173,156,174 173,156,274 173,156,374 173,156,474

Mortazavi data




What we get: highly non-uniform coverage

T 300 Uniform

+— )

0 £ f

2.5 200" Actual

© o

CUU 100 -

S i Al

D 0- Ull.hhﬂ.iuL.th S T

not perfect, but better:
38% reduction in LLR

300 -
8 N of uniform model;
+ = 200- hugely more likely
S5
SR 100- ‘ | ‘ ‘
Apoa2 >——>r————>—>—> 200 nucleotides |

The Good News: we can (partially) correct the bias



Frequency

Kullback-Leibler

Divergence

0.4-
0.3~

0.1-

0.4~
0.3-
0.2-
0.1-

0.4-
0.3~
0.2-
0.1-

0.4~
0.3-
0.2-
0.1-

0.5-
0.4-
0.3-
0.2-
0.1-
0.0-

(|n part)

Bias is.sequence-dependent

ABI IHlumina

oo N

|
-40

/\A Dataset
N NAN/ASA—e—e0
=_=_AM\M — A—J\/ V- E— = Wetterbom
- Katze
—""""‘A/\//\' == Mortazavi
—_— A
% N~ ~= === Bullard
Trapnell
e\ A N
o W~
R /\/,\A\ I - A/“A?\ [
| | | [} ] ] ] ] ]
-20 0 20 40 -40 20 0 20 40
" I '
Position Reads

and platform/sample-dependent

Fitting a model of the sequence surrounding read starts
lets us predict which positions have more reads.



you know
this

E[xi|s;]=N Pr[m;|s;]=N Pr[m;] = E[x;]
Fro
Pr[s;|m;]Pr[m;]

PI'[S,']

This suggests a natural scheme in which observations may be reweighted
to correct for bias. First, define the sequence bias b; at position i as b; =
Pr[s;]/Pr[s;|m;].

Now, if we reweight the read count x; at position i by b;, we have,

Prim;|s;]=

E[b;xi|s;]1="Db;E[x;|s;]

=Nb;Pr[m;|s;]
e : you could
:NPr[mzlsz]Pr[sl] 4o this
Pr[s;|m;]
=NPr[m,-]
=FE[x;]

Thus, the reweighted read counts are made unbiased.



o

~ Log10 Bias ~—

1.0 -
0.5 -
0.0 -
-0.5 -
-1.0 -

o

400 -
300 -
200 -
100 -

0 .
400 -
300 -
200 -
100 -

0 -

Counts

Adjusted Unadjusted
Counts

Apoa2 >—>—r—>—>—>—>—>—]

I
chr1 173,156,174 173,156,274 173,156,374 173,156,474

(@) sample foreground sequences

| —
| —
——

e * ATCTAACTCTCCCTTGAGGGCCTAGT CCATAARAT @ ¢« ¢

T

(b) sample background sequences

c * ATCTAARGT CTCCCTTGAGGGECCTAGT CCATAAAT « ¢« ¢

T
(c) train Bayesian network
— I
predict bias

e

adjust read counts

lrmud.ul,u,.lamm'.LUuLA
e —

R2=0.38




Modeling Sequence Bias

Want a probability distribution over k-mers, k = 40
Some obvious choices

Full joint distribution: 4%-1 parameters

PWM (0-th order Markov): (4-1)*k parameters
Something intermediate

Directed Bayes network

40



Form of the models:

Directed Bayes nets

One “node” per nucleotide,
+20 bp of read start
‘Filled node means that
position is biased
*Arrow i = j means letter at
position i modifies bias at j
*For both, numeric params

say how much you could do
this: somewhat

1 ke EM

Wetterbom
(282 parameters)



)

NB:

» O *Not just initial
’«OO hexamer
®
? é) *Span = 19
—_ =0 *All include
(a8 <O .
<C 2Ye) neggt.lve
° % positions
‘o o, All different,
. \ even on same
00 oo 00 0O |
“61\09 ?Z o 2 1\6‘[\09 % o 2 P atform
Wetterbom Katze
(282 parameters) (684 parameters)
«
=
=
=

Bullard
(696 parameters)

Trapnell
(360 parameters)

Mortazavi
(582 parameters)



Result — Increased Uniformity

Kullback-Leibler Divergence

0.4

0.3

0.2:

0.1

1.0

0.8:

0.6

0.4

0.2:

-
|

A

Method
== BN <— Jones

== MART ,
Li et al
m GLM

7mer Hansen et al

Unadjusted

AT Trapnell Data



Result — Increased Uniformity

. BNn- T~ 3
MART - v cwe—}— %
GLM- ' | I | * (—2

) _._l “_.._.. x O

rmer | l. | : | | | O

20 -15 -1.0 -05 00 05 S

—_— BN— - : I :
MART - - (11 % 4
GLM - 0w [ T *N

7mer — N ol -_D]_-. x (D

| | | | | | |
-0.6 -04 -02 00 02 04 0.6

Fractional improvement > R2 you could do this:a

in log-likelihood under — hypothesis test “Is BN

uniform model across better than X?
X = no -23
1000 exons (R2=1-L'/L) p-value < |10




some questions

| . How does the amount of training data effect accuracy
of the resulting model?

2.What is the chance that we will learn an incorrect
model! E.g,learn a biased model from unbiased
input?

Wetterbom
(282 parameters)
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“First, do no harm”

Theorem:

The probability of “false bias discovery,’ i.e.,

of learning a non-empty model from n reads
sampled from unbiased data is less than

| - (Pr(X < 3 log n))%

where h = number of nucleotides in the
model and X is a random variable that

(asymptotically in n) is y? with 3 degrees of
freedom. (E[X] = 3)



“First, do no harm”

Theorem: The probability of “false bias discovery,” i.e., of

learning a non-empty model from n reads sampled from
unbiased data, declines exponentially with n.

107 =

(-

(-

(-

A

Prob(non-empty model | unbiased data)

If > 10,000 reads are used, the probability
of a non-empty model < 0.0004

1 0%

|
10 10 10°

Number of training reads
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how different are two distributions?

Given: r-sided die, with probs pi...pr of each face. Roll it n=10,000 times; observed
frequencies = qy, ..., gr, (the MLEs for the unknown pi’s). How close is pi to gi!

Kullback-Leibler divergence, also known as relative entropy, of Q with respect to P is defined as
Q| | P Z ai ln -

where g; (p;) is the probability of observing the i" event according to the distribution Q (resp.,
P), and the summation is taken over all events in the sample space (e.g., all k-mers). In some
sense, this is a measure of the dissimilarity between the distributions: if p; ~ g; everywhere,

their log ratios will be near zero and H will be small; as g; and p; diverge, their log ratios will

deviate from zero and H will increase. -
Fancy name, simple idea: H(Q||P) is just the expected per-sample contribution to

log-likelihood ratio test for “was X sampled from Ho: P vs H: Q?”
So, assuming the null hypothesis is false, in order for it to be rejected with say, 1000 : 1

odds, one should choose m to be inversely proportional to H(Q||P):

mH(Q||P) > In 1000
. In1000
~ H(QIIP)

you
could
do this

48




Continuing the notation above, suppose P as an unknown distribution with parameters p1, . . ., p,

>~ pi = 1 where r is the number of points in the sample space (e.g. r = 4 in the case of k-
mers). Given a random sample X7, Xa, ..., X, of size n = ), X; from P, it is well known that
the maximum likelihood estimators for the parameters are g; = % ~ p;. How good an estimate
for P is this distribution Q? The estimators are unbiased:

Xi

E[q/]:EIFI = = =p,

and the standard deviation of each estimate is proportional to 1/+/n, so these estimates are in-
creasingly accurate as the sample size increases. A more quantitative assessment of the accuracy
of the estimator is obtained by evaluating the KL divergence:

gi — Pi
H(QIIP) = Zq,ln ~Yan (”T)
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Using the first two terms of the Taylor series for In(1 + x), this is

r 2
g—pi 1 (q—p
H(QI|P %E qi ——( )
(@IIF) — I( pi 2 pi
o~ _G—p G (q—p)?
—E di -
i=1 Pi 2pi

Since Y37y qi =iy pi =1, 30, ¥R = 0,50

9% =P _ 9P _ G (qi — pi)?
H(QIIP) gi — pi -
| Z b Pi 2pi P

R (1—2%',)

since g; & p;. Multiplying by n? /n* we have,

H(@IIP) ~ o 3 (1 e

2n np;
=1
1 X = EIX])?
N 2n 1 E[X,]

50



... and after a modicum of algebra:

EIH(QIIP)] =

r—1
2N

You could do this, too:
LLR of error rises with
<——number of parameters r,
declines with size of

... which empirically is a good approximation:

Relative Entropy, wrt Uniform, of Observed n balls in r bins

Each Circle is mean of 100 trials; Stars are theoretical estimates for n/r >= 1/4.

training set n
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Median Goodness of Fit

... and so the probability of falsely inferring “bias’ from an

unbiased sample

declines rapidly with
size of training set
(while runtime rises)

Log10 Probabilty of Non-empty Model

6549 sec.

10%°
Number of Reads

Figure 8: Median R? is plotted against training set size. Each point is additionally labeled with
the run time of the training procedure.

107 10
Log10 Number of reads

you could do this,
too: more
algebra (albeit
Daniel was a bit
clever)
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Availability

.
POLTR RN

Bioconductor .

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Home » Bioconductor 2.12 » Software Packages » segbias

segbias

Estimation of per-position bias in high-throughput sequencing data

Bioconductor version: Release (2.12)

Download stats for Software package seqbias

This package Implements a model of per-pos This page was generated on 2015-06-01 06:29:02 -0700 (Mon, 01 Jun 2015).

using a simple Bayesian network, the structu

reads and a reference genome sequence. seqgbias home page: release version, devel version.

Author: Daniel Jones <dcjones at cs.washing’

Maintainer: Daniel Jones <dcjones at cs.wasl

To install this package, start R and enter: IOOOE

source("http://bioconductor.org/
biocLite("segbias")

Month [NB/GfdistinctIPS Nb of downloads
Ju2o14 T Ed| 252
Aug/2014 [NNN236 360
Sep/2014 [INNNN242 360
Oct/2014 [EEINTHS7 292
] Nov/2014 217 299
1 Dec/2014 86 311
Jan/2015 [ Gs 371
1 Feb/2015 438 270
Mar/2015 [ET| 327

Assessing and Adjusting 10

P_“&& Reference Manual ] Apr/2015 70 264
5 - May/2015 [EETHSS 220
] Jun/2015 N0 0
2 | All months [IH648 3326
1 [ Nb of distinct IPs 4
1 Nb of downloads
0

Sep/2014 Dec/2014 Mar/2015 Jun/2015
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summary

Prob/stats we've looked at is actually

useful, giving you tools to understand

contemporary research in CSE (and
elsewhere).

| hope you enjoyed it!
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And One Last Bit of Probability Theory



GET FUZZY

|1°Ve BeEN THINKIN IT°S THE THECRY THAT IF
1ABOUT THe WHOLE oV GET A LOAD OF
INFIN[TE MONKeY MONKEYS ON TYFe -

WRITERS, ONE WiLL
ACCIDENTALY TYPE

THING LATELY. .
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WELL , THE WHOLE THEZRY
IS FLAWED. “INFINITE™

\S TOO MANT MONKETS.

OVER & MONKEYS AND
OU'Re RUNNING INTO
DiSciPLINE AND

HYGIENE (SSUES,

by Darby Conley

AND WHO’S GONNA READ INFINITE
MONKEY SCRIPTS?Z SOME CHIMP
COULD HAVE WRITTEN THE NEXT
DA VINC\ Cope | BUT MEWSFLASH :
HE'S EATING THAT SCRIPT BEFCRE
YU EVER SeE T,
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HERES WHAT U Do
You BUY A $2 BAG
OF NUTS. YU GO TRAP
YOURSELE SOME

~ SQUIRRELS...
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YoU PUT THEM ON WORD
PROCESSORS - WITH
SPELLCHECK -- AND
YO SHeoT feR A “TwWo

AND A HALF MEN”
\
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You PockeT THe
INFINITE MONKEY
SELL THE SCRIPT,
AND RETIRE TO

See also:

{

So Now (T’S FINITE

SQUIRRELS AT WORD NEVER

PROCESIRS? ..I'M £ MIND. YOV
STILL LOST. GOT TWo

http://mathforum.org/library/drmath/view/5587 | .html
http://en.wikipedia.org/wiki/Infinite_monkey theorem
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