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independence

Defn: Two events E and F are independent if
P(EF) = P(E) P(F)

If P(F)>0, this is equivalent to:  P(E|F) = P(E)  (proof below)

Otherwise, they are called dependent
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independence

Roll two dice, yielding values D1 and D2 
1) E = { D1 = 1 }  

F = { D2 = 1 } 
P(E) = 1/6,  P(F) = 1/6,  P(EF) = 1/36 
P(EF) = P(E)•P(F) ⇒ E and F independent
Intuitive; the two dice are not physically coupled

2) G = {D1 + D2 = 5} = {(1,4),(2,3),(3,2),(4,1)}
P(E) = 1/6, P(G) = 4/36 = 1/9, P(EG) = 1/36 
not independent! 
E, G are dependent events
The dice are still not physically coupled, but “D1 + D2 = 5” couples 
them mathematically: info about D1 constrains D2.  (I.e., dependence/
independence not always intuitively obvious; “use the definition, Luke.”)
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independence

Two events E and F are independent if
P(EF) = P(E) P(F)
If P(F)>0, this is equivalent to:  P(E|F) = P(E)
Otherwise, they are called dependent

Three events E, F, G are independent if
P(EF) = P(E) P(F)   
P(EG)= P(E) P(G)      and      P(EFG) = P(E) P(F) P(G)  
P(FG)= P(F) P(G)

Example:  Let X, Y be each {-1,1} with equal prob
E = {X = 1}, F = {Y = 1}, G = { XY = 1}
P(EF) = P(E)P(F), P(EG) = P(E)P(G), P(FG) = P(F)P(G),  
all 1/4 but P(EFG) = 1/4 too!!!   (because P(G|EF) = 1)
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independence

In general, events E1, E2, …, En are independent if  
for every subset S of {1,2,…, n}, we have
 
 
 
 
 
 
 
(Sometimes this property holds only for small  
subsets S.  E.g., E, F, G on the previous slide are  
pairwise independent, but not fully independent.)
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independence

Theorem:  E, F independent ⇒ E, Fc independent

Proof:     P(EFc) = P(E) – P(EF)
                  = P(E) – P(E) P(F)
                  = P(E) (1-P(F))
                  = P(E) P(Fc)  

Theorem: if P(E)>0, P(F)>0, then  
   E, F independent ⇔ P(E|F)=P(E) ⇔ P(F|E) = P(F)

Proof:  Note P(EF) = P(E|F) P(F), regardless of in/dep.
Assume independent.  Then  
     P(E)P(F) = P(EF) = P(E|F) P(F) ⇒ P(E|F)=P(E) (÷ by P(F))  

Conversely, P(E|F)=P(E) ⇒  P(E)P(F) = P(EF)       (× by P(F))
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biased coin

Suppose a biased coin comes up heads with probability p, 
independent of other flips 

 P(n heads in n flips) =  pn             

 P(n tails in n flips) =  (1-p)n                

 P(exactly k heads in n flips)  
 

Aside: note that the probability of some number of heads = 
as it should, by the binomial theorem.                
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Suppose a biased coin comes up heads with  
probability p, independent of other flips 

P(exactly k heads in n flips)  

Note when p=1/2, this is the same result we would have 
gotten by considering n flips in the “equally likely 
outcomes” scenario.  But p≠1/2 makes that inapplicable.  
Instead, the independence assumption allows us to 
conveniently assign a probability to each of the 2n 
outcomes, e.g.:

Pr(HHTHTTT) = p2(1-p)p(1-p)3 = p#H(1-p)#T

biased coin
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A data structure problem:  fast access to small subset of data 
drawn from a large space.

A solution: hash function h:D→R crunches/scrambles names 
from large space D into small one R.
Example: if x is (or can be viewed as) an integer:

h(x) = x mod n  

hashing (i)

9

(Large) space of 
potential data 

items, say names 
or SSNs, only a 
few, say, n/2, of 

which are 
actually used (Small) hash table 

containing  actual data

x

i

h(x) = i

•

0
...
n-1

D
R

y



Scenario: Hash m≤n keys from D  
  into size n hash table.  

How well does it work?
Worst case: All collide in one bucket.  (Perhaps too pessimistic?)

Best case: No collisions.                         (Perhaps too optimistic?)

A middle ground: Probabilistic analysis. 
Below, for simplicity, assume 
- Keys drawn from D randomly, independently (with replacement)

- h maps equal numbers of domain points into each range 
bin, i.e., |D| = k|R| for some integer k, and |h-1(i)| = k for all 
0 ≤ i ≤ n-1

Many possible questions; a few analyzed below

hashing (ii)
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hashing (iii)

m keys hashed into a table with n buckets
Each string hashed is an independent sample from D
E = at least one string hashed to first bucket

What is P(E) ?
Solution:
Fi = string i not hashed into first bucket (i=1,2,…,m)
P(Fi) = (n-1)/n for all i=1,2,…,m
Event (F1 F2 … Fm) = no strings hashed to first bucket
P(E) = 1 – P(F1 F2 ⋯ Fm) 

  = 1 – P(F1) P(F2) ⋯ P(Fm)  
  = 1 – ((n-1)/n)m  
  = 1– [((n-1)/n)n]m/n

  ≈ 1-exp(-m/n)   

indp
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perfect hashing (i)

Let |R| = n, D0 ⊆ D, |D0| = m.  A hash function h:D→R is  perfect 
for D0 if h:D0→R is injective (no collisions).   How likely is that?  

1) Fix h; pick m elements of D0 independently at random ∈ D

Again, suppose h maps (1/n)th of D to each element of R.  
This is like the birthday problem:  

    P(h is perfect for D0) = 

Except for very empty  
tables, a “perfect” hash  
is improbable

(Q: why less likely with  
larger n, fixed m/n?) 
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perfect hashing (ii)

Let |R| = n, D0 ⊆ D, |D0| = m.  A hash function h:D→R is  perfect 
for D0 if h:D0→R is injective (no collisions).   How likely is that?  

2) Fix D0; pick h at random (among all with constant |h-1(i)|) 

E.g., if m = |D0| = 23 and n = 365, then there is ~50% 
chance that the first h you try is perfect for this fixed D0.  If 
it isn’t, pick h(2), h(3), …  With high probability, you’ll quickly 
find a perfect one!  

“Picking a random function h” is easier said than done, but, 
empirically, picking from a set of parameterized fns like  
 
 
where a, b are random 64-bit ints is a start.
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ha,b(x) = (a•x + b) mod n



Consider the following parallel network  
 
 
 
 
 
 
 
 
 
n routers, ith has probability pi of failing, independently
P(there is functional path) = 1 – P(all routers fail)
                          = 1 – p1p2 ⋯ pn

…

p1

p2

pn

network failure
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Contrast: a series network

n routers, ith has probability pi of failing, independently
P(there is functional path) = 
       P(no routers fail) = (1 – p1)(1 – p2) ⋯ (1 – pn)

…

p1

p2

pn

network failure
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deeper into independence

Recall:  Two events E and F are independent if
      P(EF) = P(E) P(F)  

If E & F are independent, does that tell us anything about
      P(EF|G), P(E|G), P(F|G), 
when G is an arbitrary event?  In particular, is
      P(EF|G) = P(E|G) P(F|G) ?  

In general, no.
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deeper into independence

Roll two 6-sided dice, yielding values D1 and D2

E = { D1 = 1 }
F = { D2 = 6 }
G = { D1 + D2 = 7 }

 
E and F are independent

P(E|G) = 1/6
P(F|G) = 1/6, but 
P(EF|G) = 1/6, not 1/36 

so E|G and F|G are not independent!
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conditional independence

Definition:
Two events E and F are called conditionally independent 
given G, if
P(EF|G) = P(E|G) P(F|G)

Or, equivalently (assuming P(F)>0, P(G)>0),
P(E|FG) = P(E|G)  

Example:
E = has lung cancer
F = carries matches
G = smokes cigarettes
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Randomly choose a day of the week
A = { It is not a Monday }
B = { It is a Saturday } 
C = { It is the weekend }

A and B are dependent events
P(A) = 6/7,  P(B) = 1/7,  P(AB) = 1/7.

Now condition both A and B on C:
P(A|C) = 1,  P(B|C) = ½,  P(AB|C) = ½
P(AB|C) = P(A|C) P(B|C) ⇒ A|C and B|C independent 

Dependent events can become independent  
by conditioning on additional information!

conditioning can also break DEPENDENCE
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Another reason why 
conditioning is so useful



independence: summary

Events E & F are independent if 
P(EF) = P(E) P(F), or, equivalently P(E|F) = P(E) (if p(E)>0)

More than 2 events are indp if, for alI subsets, joint probability 
= product of separate event probabilities
Dependent means correlated, associated, (partially) predictive 
Independence can greatly simplify calculations
For fixed G, conditioning on G gives a probability measure,  
P(E|G)
But “conditioning” and “independence” are orthogonal:

Events E & F that are (unconditionally) independent may 
become dependent when conditioned on G
Events that are (unconditionally) dependent may become 
independent when conditioned on G 
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