CSE 312: Foundations of Computing II
Quiz Section \#8: Central Limit Theorem

1. Before putting any bets down on roulette, you watch 100 rounds, each of which results in an integer between 1 and 36 . You count how many rounds have a result that is odd and, if the count exceeds 55 , you decide the roulette wheel is unfair. Assuming the roulette wheel is fair, approximate the probability that you make the wrong decision.
2. A factory produces X_{i} gadgets on day i, where the X_{i} are independent and identically distributed random variables, each with mean 5 and variance 9 .
(a) Approximate the probability that the total number of gadgets produced in 100 days is less than 440.
(b) Approximate the greatest value of n such that $\mathrm{P}\left(X_{1}+X_{2}+\cdots+X_{n} \geq 5 n+200\right) \leq 0.05$.
3. (a) A fair coin is tossed 50 times. Use the Central Limit Theorem to estimate the probability that fewer than 20 of those tosses come up heads.
(b) A fair coin is tossed until it comes up heads for the 20th time. Use the Central Limit Theorem to estimate the probability that more than 50 tosses are needed. (Hint: you will need the mean and variance of a geometric random variable, which you can find in Example 2.15 of the text.)
(c) Compare your answers from parts (a) and (b). Why are they close but not exactly equal?
