CSE 312: Foundations of Computing II
Quiz Section \#7: Exponential distribution

Recall the probability density function for $X \sim \operatorname{Exp}(\lambda)$:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & , \text { if } x \geq 0 \\ 0 & , \text { if } x<0\end{cases}
$$

1. Starting from the probability density function, prove that $\mathrm{E}[X]=1 / \lambda$. (Hint: use integration by parts.)
2. Starting from the probability density function, prove that $\mathrm{P}(X \geq t)=e^{-\lambda t}$, for $t \geq 0$. As a corollary, show that the cumulative distribution function for X is $F(t)=1-e^{-\lambda t}$.
3. Prove the memorylessness property for exponential distributions: If s and t are nonnegative, then $\mathrm{P}(X \geq s+t \mid X \geq s)=\mathrm{P}(X \geq t)$.
