CSE 312: Foundations of Computing II
Quiz Section \#4

1. Corrupted by their power, the judges running the popular game show America's Next Top Mathematician have been taking bribes from many of the contestants. During each of two episodes, a given contestant is either allowed to stay on the show or is kicked off. If the contestant has been bribing the judges, she will be allowed to stay with probability 1 . If the contestant has not been bribing the judges, she will be allowed to stay with probability $1 / 3$, independent of what happens in earlier episodes. Suppose that $1 / 4$ of the contestants have been bribing the judges. The same contestants bribe the judges in both rounds.
(a) If you pick a random contestant who was allowed to stay during the first episode, what is the probability that she was bribing the judges?
(b) If you pick a random contestant, what is the probability that she is allowed to stay during both episodes?
(c) If you pick a random contestant who was allowed to stay during the first episode, what is the probability that she gets kicked off during the second episode?
2. Let the random variable $X$ be the sum of two independent rolls of a fair die.
(a) What is the probability mass function of $X$ ?
(b) From your answer to part (a), calculate $\mathrm{E}[X]$.
3. Let the random variable $X$ be the number of heads in $n$ independent flips of a fair coin.
(a) What is the probability mass function of $X$ ?
(b) From your answer to part (a), calculate $\mathrm{E}[X]$.

Hint: prove and use the identity $i\binom{n}{i}=n\binom{n-1}{i-1}$.
4. This problem demonstrates that independence can be "broken" by conditioning. Let $D_{1}$ and $D_{2}$ be the outcomes of two independent rolls of a fair die. Let $E$ be the event " $D_{1}=1$ ", $F$ be the event " $D_{2}=6$ ", and $G$ be the event " $D_{1}+D_{2}=7$ ". Even though $E$ and $F$ are independent, show that

$$
\mathrm{P}(E \cap F \mid G) \neq \mathrm{P}(E \mid G) \mathrm{P}(F \mid G)
$$

