Another Randomized Algorithm

Freivalds' Algorithm

for
Matrix Multiplication

Randomized Algorithms

- Quicksort makes effective use of random numbers, but is no faster than Mergesort or Heapsort.
- Here we will see a problem that has a simple randomized algorithm faster than any known deterministic solution.

Matrix Multiplication

Multiplying $n \times n$ matrices ($n=2$ in this example)

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{ll}
a w+b y & a x+b z \\
c w+d y & c x+d z
\end{array}\right]
$$

Complexity of straightforward algorithm: $\Theta\left(n^{\mathbf{3}}\right)$ time
(There are 8 multiplications here; in general, n multiplications for each of n^{2} entries)
Coppersmith \& Winograd showed how to do it in time $\mathrm{O}\left(n^{2.376}\right)$ in 1989.
Williams improved this to $\mathrm{O}\left(n^{2.3729}\right)$ in 2011. Progress!

History of Matrix Multiplication Algorithms Running time: $\mathrm{O}\left(\mathrm{n}^{\omega}\right)$

Frievalds' Algorithm (1977)

- Freivalds' variant of problem:

Determine whether $n \times n$ matrices A, B, and C satisfy the condition $A B=C$

- Method:
- Choose $x \in\{0,1\}^{n}$ randomly and uniformly (vector of length n)
- If $A B x \neq C x$ then report " $A B \neq C$ "

$$
\text { else report " } A B=C \text { probably" }
$$

Running Time

- $A B x=A(B x)$, so we have 3 instances of an $n \times n$ matrix times an n-vector
- These are $\mathrm{O}\left(n^{2}\right)$ time operations if done straightforwardly
- Total running time $\mathrm{O}\left(n^{2}\right)$
- Fastest deterministic solution known: $\mathrm{O}\left(n^{2.3729}\right)$

How Often Is It Wrong?

$\mathrm{P}(A B x=C x \mid A B=C)=1$
$\mathrm{P}(A B x=C x \mid A B \neq C) \leq 1 / 2:$

- Assume $A B \neq C$
- Then $A B-C \neq 0$, so there exist i, j with $(A B-C)_{i j} \neq 0$
- Let $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be i-th row of $A B-C ; d_{j} \neq 0$
- $\mathrm{P}((A B-C) x=0 \mid A B \neq C)$

$$
\begin{aligned}
& \leq \mathrm{P}\left(\sum_{i=1}^{n} d_{i} x_{i}=0 \mid A B \neq C\right) \\
& =\mathrm{P}\left(\left.x_{j}=-\frac{1}{d_{j}} \sum_{i \neq j} d_{i} x_{i} \right\rvert\, A B \neq C\right) \\
& \leq 1 / 2
\end{aligned}
$$

Decreasing the Probability of Error

- By iterating with k random, independent choices of x, we can decrease probability of error to $1 / 2^{k}$, using time $\mathrm{O}\left(k n^{2}\right)$.
- Interesting comparison
- Quicksort is always correct, and runs slowly with small probability.
- Frievalds' algorithm is always fast, and incorrect with small probability.

