Independence
additional examples

INDEPERDENCE DAY

biased coin

Suppose a biased coin comes up heads with probability p,
independent of other flips

P(n heads in n flips)

I
-
>

P(n tails in n flips) = (I-p)"

n ’ L
P(exactly k heads in n flips) = ()pk(l —p)" "

n .)A‘ 1—n n—k _) 1—p))" =1
Aside: note that the probability of some number of heads = EA: (k')] (1-2) (p+(1=p)

as it should, by the binomial theorem.

biased coin

Suppose a biased coin comes up heads with
probability p, independent of other flips \&/

n s ‘ [
P(exactly k heads in n flips) = (A)pk(l _ p)n—k

Note when p=1/2, this is the same result we would have
gotten by considering n flips in the “equally likely
outcomes’ scenario. But p#1/2 makes that inapplicable.
Instead, the independence assumption allows us to
conveniently assign a probability to each of the 2"
outcomes, e.g.:

Pr(HHTHTTT) = p*(1-p)p(1-p)’ = p™(1-p)*"

network failure

Consider the following parallel network

n routers, it" has probability p; of failing, independently
P(there is functional path) = | — P(all routers fail)

=1 =pip27" Pn

network failure

Contrast: a series network

n routers, it" has probability p; of failing, independently
P(there is functional path) =
P(no routers fail)

=(l=p)(I =p2) = (I =pyn)

hashing

A data structure problem: fast access to small subset of data
drawn from a large space.

D

(Large) space of

potential data 0
items, say names
or SSNs, only a i
few of which are 1

actually used
(Small) hash table

containing actual data

A solution: hash function h:D—{0,...,n-1} crunches/scrambles
names from large space into small one. E.g., if x is integer:

h(x) = x mod n

Good hash functions approximately randomize placement.

hashing

m strings hashed (uniformly) into a table with n buckets
Each string hashed is an independent trial

E = at least one string hashed to first bucket
What is P(E) ?

Solution:
F. = string i not hashed into first bucket (i=1,2,...,m)
P(F)=1—-1/n= (n-I)/n for all i=1,2,...,m
Event (F F, ... F,) = no strings hashed to first bucket
PE) = I - P(F, F, - F,) |

- 1P PR P

=1 —((n-1)/n)™

~ | -exp(-m/n)

hashing

m strings hashed (non-uniformly) to table w/ n buckets
Each string hashed is an independent trial, with probability
p; of getting hashed to bucket i
E = At least | of first k buckets gets 2 | string
What is P(E) ?
Solution:

. = at least one string hashed into i-th bucket
P(E) = P(F, U - UFy) = I-P((F, U - UF))

=1 -P(FcF,c ... F)

= | — P(no strings hashed to buckets | to k)
=1 = (1-p1-p2=*-pi)"

