Learning From Data: MLE

Maximum Likelihood Estimators

Parameter Estimation

- Assuming sample x_1 , x_2 , ..., x_n is from a parametric distribution $f(x|\theta)$, estimate θ .
- E.g.: Given sample HHTTTTTHTHTHTTTHH of (possibly biased) coin flips, estimate
- $\theta = probability of Heads$

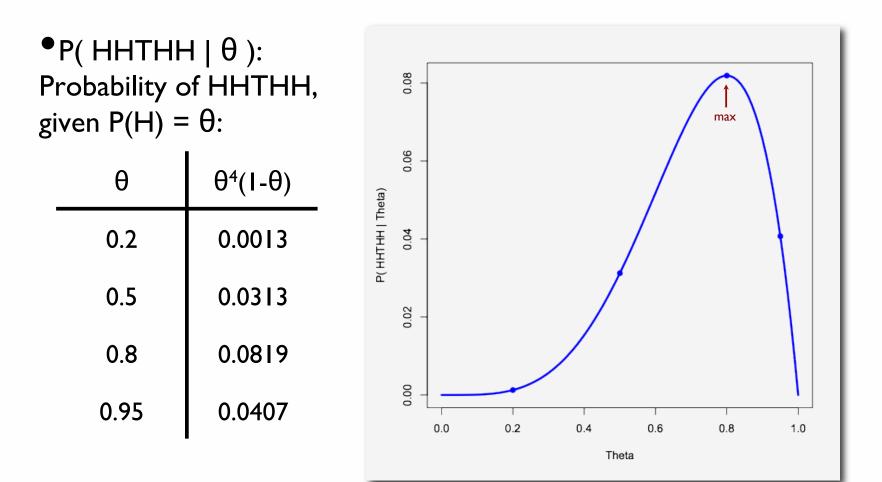
 $f(x|\theta)$ is the Bernoulli probability mass function with parameter θ

Likelihood

- $P(x \mid \theta)$: Probability of event x given model θ
- Viewed as a function of x (fixed θ), it's a probability •E.g., $\Sigma_x P(x \mid \theta) = I$
- Viewed as a function of θ (fixed x), it's a likelihood
 E.g., Σ_θ P(x | θ) can be anything; relative values of interest.
 E.g., if θ = prob of heads in a sequence of coin flips then P(HHTHH | .6) > P(HHTHH | .5),
 I.e., event HHTHH is more likely when θ = .6 than θ = .5

•And what θ make HHTHH most likely?

Likelihood Function



Maximum Likelihood Parameter Estimation

- One (of many) approaches to param. est.
- Likelihood of (indp) observations $x_1, x_2, ..., x_n$

$$L(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

• As a function of θ , what θ maximizes the likelihood of the data actually observed

• Typical approach:
$$\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta) = 0$$
 or $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta) = 0$

Example I

•*n* coin flips, $x_1, x_2, ..., x_n$; n_0 tails, n_1 heads, $n_0 + n_1 = n$; $\theta = \text{probability of heads}$

$$L(x_1, x_2, \dots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$$

$$\log L(x_1, x_2, \dots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$$

 $\frac{\partial}{\partial \theta} \log L(x_1, x_2, \dots, x_n \mid \theta) = \frac{-n_0}{1-\theta} + \frac{n_1}{\theta}$

Setting to zero and solving:

$$\hat{\theta} = \frac{n_1}{n}$$

Observed fraction of successes in *sample* is MLE of success probability in *population*

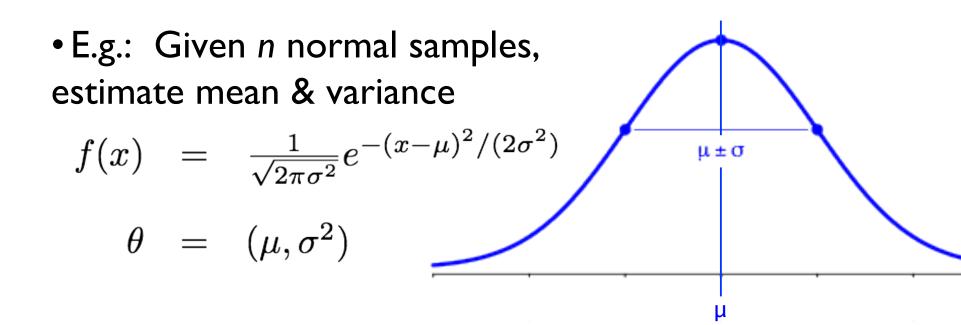
0.001

 $0.2 \ 0.4 \ 0.6 \ 0.8$

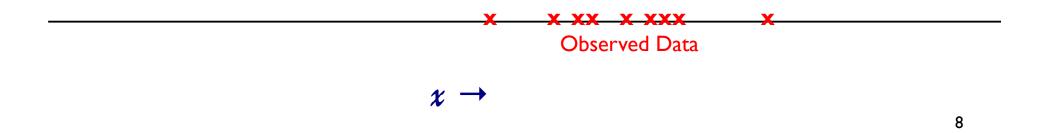
(Also verify it's max, not min, & not better on boundary)

Parameter Estimation

• Assuming sample x_1 , x_2 , ..., x_n is from a parametric distribution $f(x|\theta)$, estimate θ .

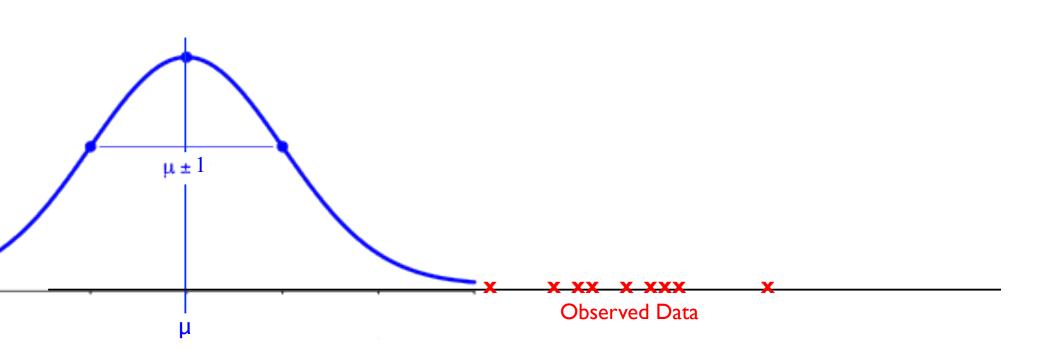


Ex2: I got data; a little birdie tells me it's normal, and promises $\sigma^2 = I$



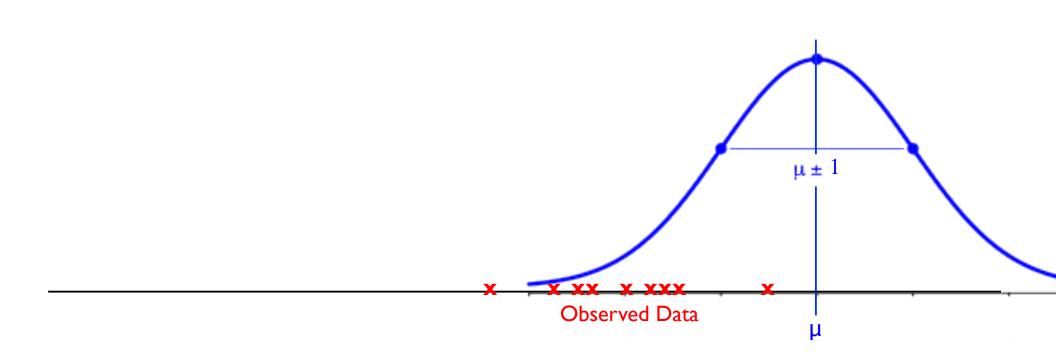
Which is more likely: (a) this?

 μ unknown, $\sigma^2 = 1$



Which is more likely: (b) or this?

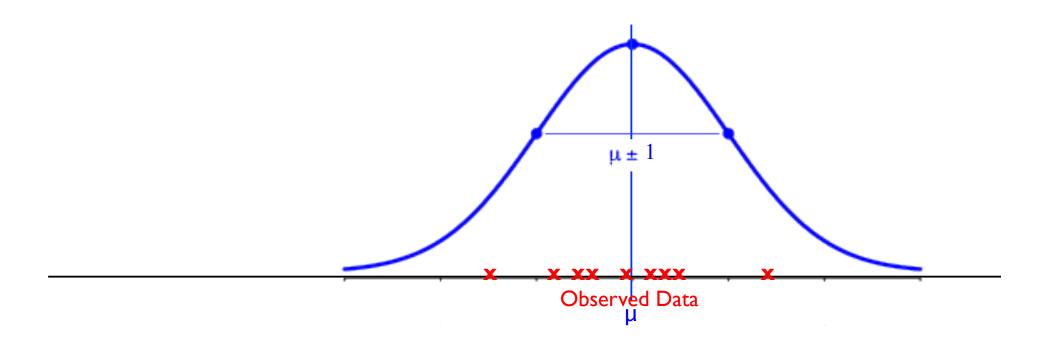
 μ unknown, $\sigma^2 = 1$



10

Which is more likely: (c) or this?

 μ unknown, $\sigma^2 = 1$

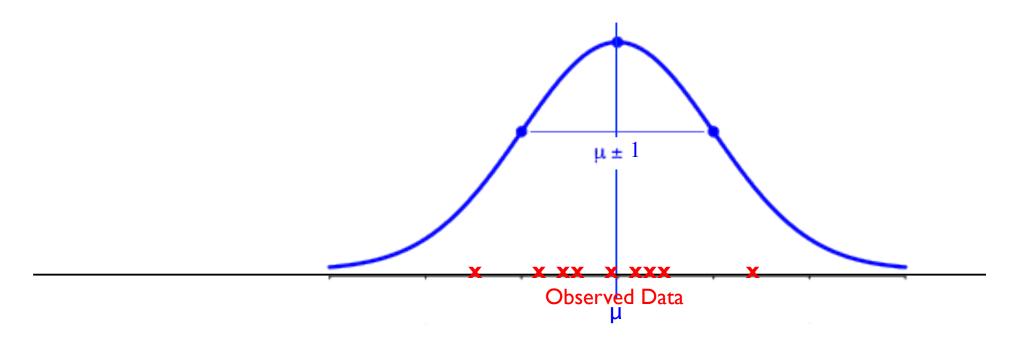


11

Which is more likely: (c) or this?

 μ unknown, $\sigma^2 = 1$

Looks good by eye, but how do I optimize my estimate of μ ?



Ex. 2:
$$x_i \sim N(\mu, \sigma^2), \ \sigma^2 = 1, \ \mu$$
 unknown
 $L(x_1, x_2, \dots, x_n | \theta) = \prod_{1 \le i \le n} \frac{1}{\sqrt{2\pi}} e^{-(x_i - \theta)^2/2}$
 $\ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi - \frac{(x_i - \theta)^2}{2}$
 $\frac{d}{d\theta} \ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{1 \le i \le n} (x_i - \theta)$
And verify it's max, not
min & not better on $= (\sum_{1 \le i \le n} x_i) - n\theta = 0$

And verify it's max, no min & not better on boundary

5

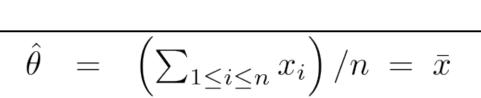
4

-3 -4 -5 -6

-7

2

3



Sample mean is MLE of population mean

Hmm ..., density ≠ probability

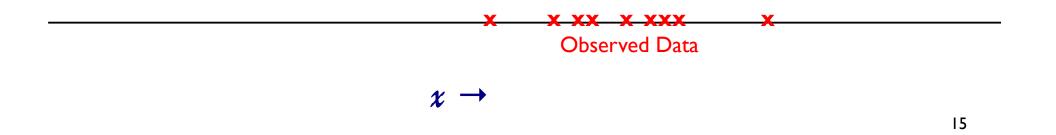
• So why is "likelihood" function equal to product of *densities*??

- •a) for maximizing likelihood, we really only care about *relative* likelihoods, and density captures that
- and/or

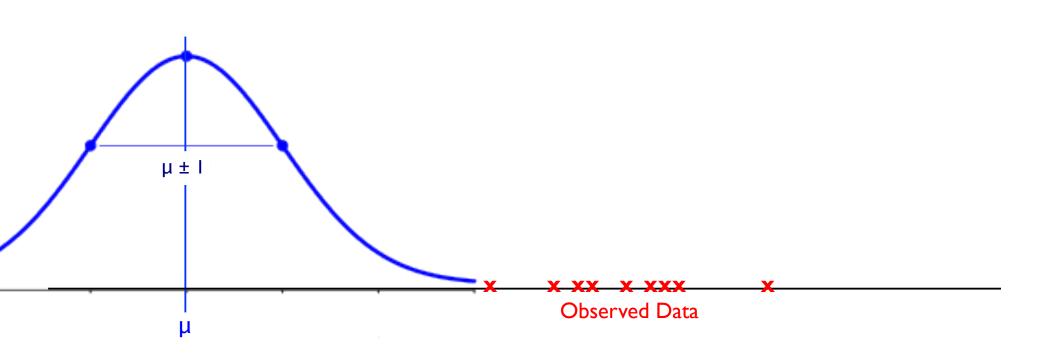
•b) if density at x is f(x), for any small $\delta > 0$, the probability of a sample within $\pm \delta/2$ of x is $\approx \delta f(x)$, but δ is *constant* wrt θ , so it just drops out of

 $d/d\theta \log L(...) = 0.$

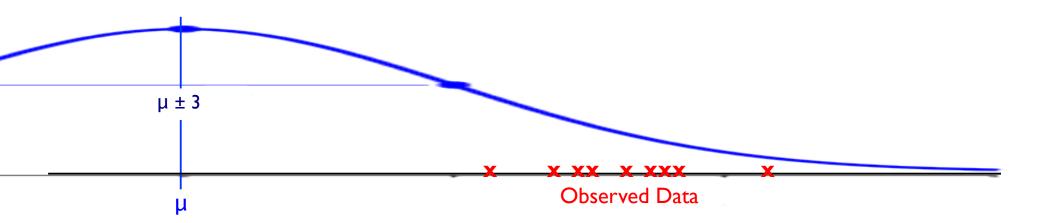
Ex3: I got data; a little birdie tells me it's normal (but does *not* tell me σ^2)



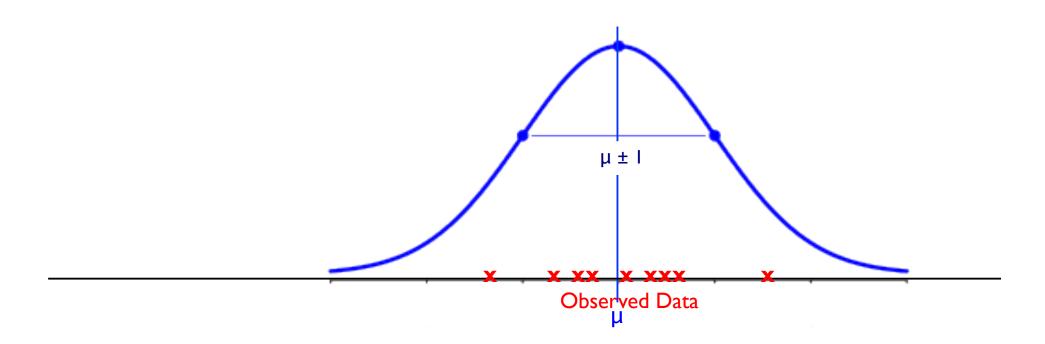
Which is more likely: (a) this?



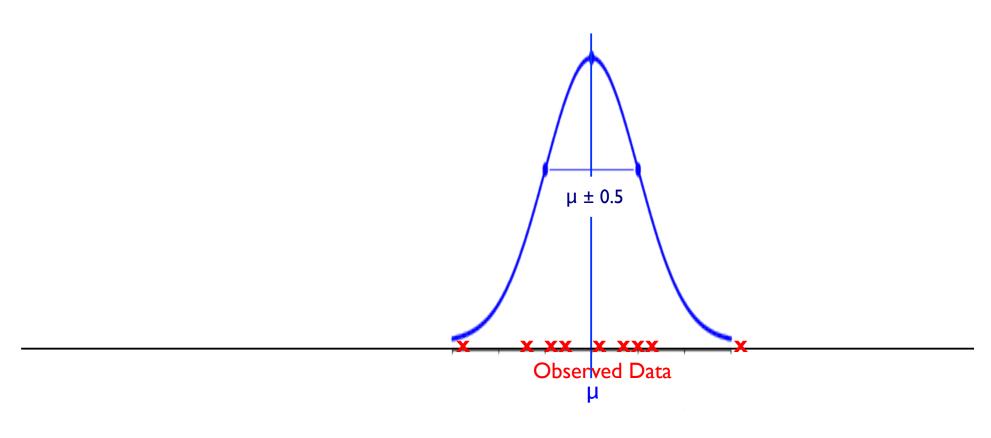
Which is more likely: (b) or this?



Which is more likely: (c) or this?

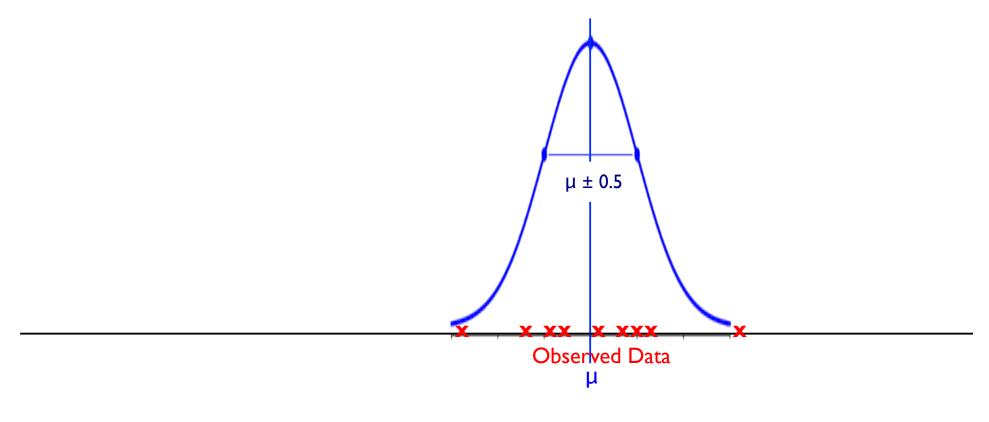


Which is more likely: (d) or this?



Which is more likely: (d) or this?

 μ, σ^2 both unknown Looks good by eye, but how do I optimize my estimates of μ & σ^2 ?



EX 3: $x_i \sim N(\mu, \sigma^2), \ \mu, \sigma^2$ both unknown

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$

$$\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} \frac{(x_i - \theta_1)}{\theta_2} = 0$$
Likelihood
surface
$$\hat{\theta}_1 = \left(\sum_{1 \le i \le n} x_i\right) / n = \bar{x}$$
Sample mean is MLE of
population mean, again

θ

-0.2

 $\boldsymbol{\theta}_{1}$

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since θ_2 drops out of the $\partial/\partial \theta_1 = 0$ equation ₂₁

Ex. 3, (cont.)

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$
$$\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \frac{2\pi}{2\pi \theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0$$
$$\hat{\theta}_2 = \left(\sum_{1 \le i \le n} (x_i - \hat{\theta}_1)^2 \right) / n = \bar{s}^2$$

Sample variance is MLE of population variance

Summary

- MLE is one way to estimate parameters from data
- You choose the *form* of the model (normal, binomial, ...)
- Math chooses the value(s) of parameter(s)
- Has the intuitively appealing property that the parameters maximize the *likelihood* of the observed data; basically just assumes your sample is "representative"