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the law of large numbers & the CLT 
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sums of random variables 

If X,Y are independent, what is the distribution of  Z = X + Y ?	


Discrete case:	


  pZ(z) = Σx pX(x) • pY(z-x) 	


Continuous case:	


fZ(z) = ∫-∞   fX(x) • fY(z-x) dx	


W = X + Y + Z ?   Similar, but double sums/integrals	


V = W + X + Y + Z ?   Similar, but triple sums/integrals	


+∞	
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example 

If X and Y are uniform,  then Z = X + Y is not; it’s triangular:	


Intuition: X + Y ≈ 0 or ≈ 1 is rare, but many ways to get X + Y ≈ 0.5	
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“laws of large numbers” 

i.i.d. (independent, identically distributed) random vars 	


    X1, X2, X3, …	


Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi]	


So limits as n→∞ do not exist (except in the degenerate case 
where μ = σ2 = 0;  note that if μ = 0, the center of the data 
stays fixed, but if σ2 > 0, then the spread grows with n).	
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weak law of large numbers 

i.i.d. (independent, identically distributed) random vars 	


    X1, X2, X3, …	


Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi]	


Consider the sample mean:	


The Weak Law of Large Numbers: ���
    For any ε > 0, as n → ∞	
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weak law of large numbers 

For any ε > 0, as n → ∞	


Proof: (assume σ2  < ∞)	


By Chebyshev inequality,	


n→∞	
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strong law of large numbers 

i.i.d. (independent, identically distributed) random vars 	


    X1, X2, X3, …	


Xi has μ = E[Xi] < ∞	


Strong Law ⇒ Weak Law (but not vice versa)	

Strong law implies that for any ε > 0, there are only a finite 
number of n satisfying the weak law condition ���
(almost surely, i.e., with probability 1)	
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weak vs strong laws 

Weak Law:	


Strong Law:	


How do they differ? Imagine an infinite 2d table, whose rows are indp 
repeats of the infinite sample Xi.  Pick ε.  Imagine cell m,n lights up if 
average of 1st n samples in row m is > ε in row 	


WLLN says fraction of lights in nth column goes to zero as n →∞.  It does 
not prohibit every row from having ∞ lights, so long as frequency 
declines.  	


SLLN says every row has only finitely many lights (with probability 1).	


lim	
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sample mean → population mean 

Xi ~ Unif(0,1)	

limn→∞ Σi=1 Xi/n→ µ=0.5 

n 
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sample mean → population mean 

μ±2σ	


Xi ~ Unif(0,1)	

limn→∞ Σi=1 Xi/n→ µ=0.5 

std dev(Σi=1 Xi/n) = 1/√12n 

n 

n 



demo	
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another example 
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another example 
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another example 
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the law of large numbers 

Note: Dn = E[ | Σ1≤i≤n(Xi-μ) | ] grows with n, but Dn/n → 0	


Justifies the “frequency” interpretation of probability	


Suppose that Pr(A) = p	


Consider independent trials in which event may or may not 
occur.  Let Xi be indicator for whether or not it occurs in ith 
trial.	


Law of Large numbers says relative frequency converges to p.	
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the law of large numbers 

Implications for gambler playing an unfair game:	


Each round bet one dollar that pays off $2 with probability 
0.49 and 0 with probability 0.51.  Expected payoff is  2*0.49 – 
1 = -$0.02	


Expected loss in one round not so bad.	


Law of large numbers says that in $n$ trials average loss will 
tend to -0.02.	


Large number of games: small average loss translates to 
HUGE accumulated loss with probability close to 1.	
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the law of large numbers 

Note: Dn = E[ | Σ1≤i≤n(Xi-μ) | ] grows with n, but Dn/n → 0	


Justifies the “frequency” interpretation of probability	


Does not justify:	


Gambler’s fallacy:  “I’m due for a win!”	


Many web demos, e.g. ���
  http://stat-www.berkeley.edu/~stark/Java/Html/lln.htm	
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normal random variable 

 X is a normal random variable   X ~ N(μ,σ2)	
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the central limit theorem (CLT) 

i.i.d. (independent, identically distributed) random vars	


   X1, X2, X3, …	


Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi] < ∞	

As n → ∞, 	


Restated:  As n → ∞,	
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CLT applies even to even wacky distributions 
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a good fit 	

(but relatively 
less good in 

extreme tails, 
perhaps)	
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CLT in the real world 

CLT is the reason many things appear normally distributed	

Many quantities = sums of (roughly) independent random vars	


Exam scores:  sums of individual problems	

People’s heights: sum of many genetic & environmental factors	

Measurements: sums of various small instrument errors	

...	




Where we go next 

A little bit of statistics:	


•  Maximum likelihood estimation	


•  Expectation Maximization	


•  Hypothesis Testing	


Some applications of probability and statistics in computer 
science.	
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Machine Learning 

Machine Learning: algorithms that use “experience” to improve 
their performance 	


Can be applied in situations where it is very challenging (or 
impossible) to define the rules by hand: e.g.	


•  face detection 	


•  speech recognition 	


•  stock prediction	
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Machine Learning 

Machine Learning: write programs with thousands/millions of 
undefined constants.	


Learn through experience how to set those constants.	


Humans do it: why not computers?	


Problem: we don’t know how brain works.	


Nonetheless, machine learning algorithms are getting better and 
better and better…..	
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More generally, might use random variables to represent 
everything about the world	


Thus, goal is to estimate f(y|x)  which is selected from some 
carefully chosen “hypothesis space”	


Space indexed by parameters  which are knobs we turn to create 
different classifiers.	


Learning:  the problem of estimating joint 
probability density functions, tuning the knobs, 
given samples from the function.	
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Why now? 

growing flood of online data	


recent progress in algorithms and theoretical foundations	


computational power	


never-ending industrial applications.	
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