random variables

A random variable X assigns a real number to each outcome in a probability space.

Ex.

Let H be the number of Heads when 20 coins are tossed
Let T be the total of 2 dice rolls
Let X be the number of coin tosses needed to see $I^{\text {st }}$ head
Note; even if the underlying experiment has "equally likely outcomes," the associated random variable may not

Outcome	H	$\mathrm{P}(\mathrm{H})$
TT	0	$\mathrm{P}(\mathrm{H}=0)=\mathrm{I} / 4$
TH	I	$\mathrm{P}(\mathrm{H}=\mathrm{I})=\mathrm{I} / 2$
HT	I	
HH	2	$\mathrm{P}(\mathrm{H}=2)=\mathrm{I} / 4$

20 balls numbered I, 2, ..., 20

Draw 3 without replacement
Let $X=$ the maximum of the numbers on those 3 balls
What is $P(X \geq 17)$

$$
\begin{aligned}
& P(X=20)=\binom{19}{2} /\binom{20}{3}=\frac{3}{20}=0.150 \\
& P(X=19)=\binom{18}{2} /\binom{20}{3}=\frac{18 \cdot 17 / 2!}{20 \cdot 19 \cdot 18 / 3!} \approx 0.134 \\
& \vdots
\end{aligned}
$$

Alternatively:

$$
P(X \geq 17)=1-P(X<17)=1-\binom{16}{3} /\binom{20}{3} \approx 0.508
$$

Flip a (biased) coin repeatedly until $I^{\text {st }}$ head observed How many flips? Let X be that number.

$$
\begin{aligned}
& P(X=I)=P(H)=P \\
& P(X=2)=P(T H)=(I-P) P \\
& P(X=3)=P(T T H)=(1-P)^{2} P
\end{aligned}
$$

Check that it is a valid probability distribution:

$$
P\left(\bigcup_{i \geq 1}\{X=i\}\right)=\sum_{i \geq 1}(1-p)^{i-1} p=p \sum_{i \geq 0}(1-p)^{i}=p \frac{1}{1-(1-p))}=1
$$

A discrete random variable is one taking on a countable number of possible values.
Ex:

$$
\begin{aligned}
& X=\text { sum of } 3 \text { dice, } 3 \leq X \leq I 8, X \in N \\
& Y=\text { index of } I^{\text {st }} \text { head in seq of coin flips, } I \leq Y, Y \in N \\
& Z=\text { largest prime factor of }(I+Y), \quad Z \in\{2,3,5,7, I I, \ldots\}
\end{aligned}
$$

If X is a discrete random variable taking on values from a countable set $\mathrm{T} \subseteq \mathrm{R}$, then

$$
p(a)= \begin{cases}P(X=a) & \text { for } a \in T \\ 0 & \text { otherwise }\end{cases}
$$

is called the probability mass function. Note: $\sum_{a \in T} p(a)=1$

Let X be the number of heads observed in n coin flips

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \text { where } p=P(H)
$$

Probability mass function:

The cumulative distribution function for a random variable X is the function $F: \mathbb{R} \rightarrow[0, I]$ defined by

$$
F(a)=P[X \leq a]
$$

Ex: if X has probability mass function given by:

$$
\begin{aligned}
& p(1)=\frac{1}{4} \quad p(2)=\frac{1}{2} \quad p(3)=\frac{1}{8} \quad p(4)=\frac{1}{8}
\end{aligned}
$$

For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected value or mean, is

$$
E[X]=\Sigma_{x} \times p(x)
$$

average of random values, weighted
 by their respective probabilities

For the equally-likely outcomes case, this is just the average of the possible random values of X

For unequally-likely outcomes, it is again the average of the possible random values of X, weighted by their respective probabilities

Ex I: Let $X=$ value seen rolling a fair die $p(1), p(2), \ldots, p(6)=1 / 6$

$$
E[X]=\sum_{i=1}^{6} i p(i)=\frac{1}{6}(1+2+\cdots+6)=\frac{21}{6}=3.5
$$

Ex 2: Coin flip; $\mathrm{X}=+\mathrm{I}$ if $\mathrm{H}($ win $\$ \mathrm{I})$, -I if T (lose $\$ \mathrm{I}$)

$$
E[X]=(+I) \cdot p(+I)+(-I) \cdot p(-I)=I \cdot(I / 2)+(-I) \cdot(I / 2)=0
$$

For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected value or mean, is

$$
E[X]=\Sigma_{x} x p(x)
$$

average of random values, weighted
 by their respective probabilities

Another view: A gambling game. If X is how much you win playing the game once, how much would you expect to win, on average, per game when repeatedly playing?

Ex I: Let $X=$ value seen rolling a fair die $p(1), p(2), \ldots, p(6)=1 / 6$ If you win X dollars for that roll, how much do you expect to win?

$$
E[X]=\sum_{i=1}^{6} i p(i)=\frac{1}{6}(1+2+\cdots+6)=\frac{21}{6}=3.5
$$

Ex 2: Coin flip; $\mathrm{X}=+\mathrm{I}$ if $\mathrm{H}($ win $\$ \mathrm{I}),-\mathrm{I}$ if C (lose $\$ \mathrm{I}$)

$$
E[X]=(+I) \cdot p(+I)+(-I) \cdot p(-I)=I \cdot(I / 2)+(-I) \cdot(I / 2)=0
$$

"a fair game": in repeated play you expect to win as much as you lose. Long term net gain/loss $=0$.

Let X be the number of flips up to $\&$ including $I^{\text {st }}$ head observed in repeated flips of a biased coin. If I pay you \$I per flip, how much money would you expect to make?

$$
\begin{align*}
P(H) & =p ; \quad P(T)=1-p=q \\
p(i) & =p q^{i-1} \\
E(x) & =\sum_{i \geq 1} i p(i)=\sum_{i \geq 1} i p q^{i-1}=p \sum_{i \geq 1} i q^{i-1} \tag{*}
\end{align*}
$$

A calculus trick:

$$
\sum_{i \geq 1} i y^{i-1}=\sum_{i \geq 1} \frac{d}{d y} y^{i}=\sum_{i \geq 0} \frac{d}{d y} y^{i}=\frac{d}{d y} \sum_{i \geq 0} y^{i}=\frac{d}{d y} \frac{1}{1-y}=\frac{1}{(1-y)^{2}}
$$

So (*) becomes:

$$
E[X]=p \sum_{i \geq i} i q^{i-1}=\frac{p}{(1-q)^{2}}=\frac{p}{p^{2}}=\frac{1}{p}
$$

E.g.:
$\mathrm{p}=\mathrm{I} / 2$; on average head every $2^{\text {nd }}$ flip
How much
would you
pay to play?
$\mathrm{p}=1 / / 0$; on average, head every $10^{\text {th }}$ flip.
expectation of a function of a random variable
Calculating $\mathrm{E}[\mathrm{g}(\mathrm{X})]$:
$\mathrm{Y}=\mathrm{g}(\mathrm{X})$ is a new r.v. Calc $\mathrm{P}[\mathrm{Y}=\mathrm{j}]$, then apply defn:
$X=$ sum of 2 dice rolls $Y=g(X)=X \bmod 5$

i	$P(i)=P[X=i]$	$i \bullet p(i)$
2	$I / 36$	$2 / 36$
3	$2 / 36$	$6 / 36$
4	$3 / 36$	$12 / 36$
5	$4 / 36$	$20 / 36$
6	$5 / 36$	$30 / 36$
7	$6 / 36$	$42 / 36$
8	$5 / 36$	$40 / 36$
9	$4 / 36$	$36 / 36$
10	$3 / 36$	$30 / 36$
11	$2 / 36$	$22 / 36$
12	$1 / 36$	$12 / 36$

j	$q(j)=P[Y=j]$	$j \bullet q(j)$
0	$4 / 36+3 / 36=7 / 36$	$0 / 36$
1	$5 / 36+2 / 36=7 / 36$	$7 / 36$
2	$1 / 36+6 / 36+1 / 36=8 / 36$	$16 / 36$
3	$2 / 36+5 / 36=7 / 36$	$21 / 36$
4	$3 / 36+4 / 36=7 / 36$	$28 / 36$

$E[Y]=\sum_{j} j q(j)=72 / 36=2$
$E[X]=\Sigma_{i} i p(i)=252 / 36=7$
expectation of a function of a random variable
Calculating $\mathrm{E}[g(\mathrm{X})]$: Another way - add in a different order, using $P[X=$... $]$ instead of calculating $P[Y=$... $]$

	$\mathrm{X}=$ sum of 2 dice rolls			$Y=g(X)=X \bmod 5$			
	i	$P(i)=P[X=i]$	$g(i) \cdot p(i)$		j	$\mathrm{q}(\mathrm{j})=\mathrm{P}[\mathrm{Y}=\mathrm{j}]$	$\mathrm{j}^{\circ} \mathrm{q}(\mathrm{j})$
	2	1/36	2/36		0	$4 / 36+3 / 36=7 / 36$	0/36
	3	2/36	6/36		1	$5 / 36+2 / 36=7 / 36$	7/36
	4	3/36	12/36		2	$1 / 36+6 / 36+1 / 36=8 / 36$	16/36
	5	4/36	0/36		3	$2 / 36+5 / 36=7 / 36$	21/36
	6	5/36	5/36		4	3/36+4/36 =7/36	28/36
	7	6/36	12/36			$E[Y]=\sum_{j} j q(j)=$	$72 / 36=2$
	8	5/36	15/36				
	9	4/36	16/36				
	40	3/36	0/36				
	11	2/36	2/36				
	12	1/36	2/36				
$\mathrm{E}[\mathrm{g}(\mathrm{X})$]	$=\Sigma$	$\Sigma_{i} g(i) p(i)=$	72/36	$=2$			

Above example is not a fluke.

Theorem: if $Y=g(X)$, then $E[Y]=\Sigma_{i} g\left(x_{i}\right) p\left(x_{i}\right)$, where
$x_{i}, i=I, 2, \ldots$ are all possible values of X.
Proof: Let $y_{j}, j=I, 2, \ldots$ be all possible values of Y.

Note that $S_{j}=\left\{x_{i} \mid g\left(x_{i}\right)=y_{j}\right\}$ is a partition of the domain of g.

$$
\begin{aligned}
\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right) & =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} g\left(x_{i}\right) p\left(x_{i}\right) \\
& =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} y_{j} p\left(x_{i}\right) \\
& =\sum_{j} y_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} p\left(x_{i}\right) \\
& =\sum_{j} y_{j} P\left\{g(X)=y_{j}\right\} \\
& =E[g(X)]
\end{aligned}
$$

A \& B each bet $\$ 1$, then flip 2 coins:

HH	A wins \$2
HT	Each takes back $\$ 1$
TH	B wins \$2

Let X be A's net gain: $+I, 0,-I$, resp.:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=+1)=1 / 4 \\
& \mathrm{P}(\mathrm{X}=0)=1 / 2 \\
& \mathrm{P}(\mathrm{X}=-1)=1 / 4
\end{aligned}
$$

What is $E[X]$?

$$
\mathrm{E}[\mathrm{X}]=|\cdot| / 4+0 \cdot \mid / 2+(-I) \cdot I / 4=0
$$

What is $\mathrm{E}\left[\mathrm{X}^{2}\right]$?

Note:
 $\mathrm{E}\left[X^{2}\right]$ \# $\mathrm{E}[\mathrm{X}]^{2}$

$$
E\left[X^{2}\right]=I^{2} \cdot\left|/ 4+0^{2} \cdot I / 2+(-I)^{2} \cdot\right| / 4=I / 2
$$

properties of expectation

Linearity of expectation, I
For any constants $\mathrm{a}, \mathrm{b}: \mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{aE}[\mathrm{X}]+\mathrm{b}$
Proof:

$$
\begin{aligned}
E[a X+b] & =\sum_{x}(a x+b) \cdot p(x) \\
& =a \sum_{x} x p(x)+b \sum_{x} p(x) \\
& =a E[X]+b
\end{aligned}
$$

Example:
Q: In the 2-person coin game above, what is $\mathrm{E}[2 \mathrm{X}+\mathrm{I}]$?
$A: E[2 X+I]=2 E[X]+I=2 \cdot 0+I=I$

Linearity, II

Let X and Y be two random variables derived from outcomes of a single experiment. Then

$$
E[X+Y]=E[X]+E[Y] \quad \text { True even if } X, Y \text { dependent }
$$

Proof: Assume the sample space S is countable. (The result is true without this assumption, but I won't prove it.) Let $\mathrm{X}(\mathrm{s}), \mathrm{Y}(\mathrm{s})$ be the values of these r.v.'s for outcome $s \in S$.
Claim: $E[X]=\sum_{s \in S} X(s) \cdot p(s)$
Proof: similar to that for "expectation of a function of an r.v.," i.e., the events " $X=\mathrm{x}$ " partition S , so sum above can be rearranged to match the definition of $E[X]=\sum_{x} x \cdot P(X=x)$
Then:

$$
\begin{aligned}
E[X+Y] & =\sum_{s \in S}(X[s]+Y[s]) p(s) \\
& =\sum_{s \in S} X[s] p(s)+\sum_{s \in S} Y[s] p(s)=E[X]+E[Y]
\end{aligned}
$$

Example

$X=\#$ of heads in one coin flip, where $P(X=1)=p$.
What is $E(X)$?

$$
E[X]=l \cdot p+0 \cdot(I-p)=p
$$

Let $X_{i}, I \leq i \leq n$, be $\#$ of H in flip of coin with $P\left(X_{i}=I\right)=p_{i}$
What is the expected number of heads when all are flipped?

$$
E\left[\Sigma_{i} X_{i}\right]=\Sigma_{i} E\left[X_{i}\right]=\Sigma_{i} i_{i}
$$

Special case: $p_{1}=p_{2}=\ldots=p$:
$E[\#$ of heads in n flips $]=p n$

Note:

Linearity is special!
It is not true in general that


```
E[X2] = E[X] 
E[X/Y] = E[X] / E[Y]
E[asinh(X)] = asinh(E[X])
```


Application: The Probabilistic Method

Bunch of prisoners in a jail.
Two lunch slots: A and B.
R pairs of prisoners are risky.
Is there a way to assign the prisoners to lunch slots so that at least I/2 the risky pairs are broken up (assigned to different lunch slots)?
X : number of risky pairs that are broken up
$E(X)=|R| / 2$.
==> there is an assignment of prisoners to lunch slots such that at least half of the risky pairs are broken up.

Cool! We showed it exists without finding it, using a probabilistic argument.

Alice \& Bob are gambling (again). $X=$ Alice's gain per flip:

$$
\begin{aligned}
& X= \begin{cases}+1 & \text { if Heads } \\
-1 & \text { if Tails }\end{cases} \\
& \mathrm{E}[\mathrm{X}]=0
\end{aligned}
$$

... Time passes ...

Alice (yawning) says "let's raise the stakes"

$$
Y= \begin{cases}+1000 & \text { if Heads } \\ -1000 & \text { if Tails }\end{cases}
$$

$\mathrm{E}[\mathrm{Y}]=0$, as before.
Are you (Bob) equally happy to play the new game?
$\mathrm{E}[\mathrm{X}]$ measures the "average" or "central tendency" of X .
What about its variability?

Definition
The variance of a random variable X with mean $E[X]=\mu$ is $\operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]$, often denoted σ^{2}.

Alice \& Bob are gambling (again). $X=$ Alice's gain per flip:

$$
\begin{aligned}
X & = \begin{cases}+1 & \text { if Heads } \\
-1 & \text { if Tails }\end{cases} \\
\mathrm{E}[\mathrm{X}] & =0
\end{aligned}
$$

... Time passes

Alice (yawning) says "let's raise the stakes"

$$
Y= \begin{cases}+1000 & \text { if Heads } \\ -1000 & \text { if Tails }\end{cases}
$$

$\mathrm{E}[\mathrm{Y}]=0$, as before.
$\underline{\operatorname{Var}[Y]}=1,000,000$
Are you (Bob) equally happy to play the new game?
$\mathrm{E}[\mathrm{X}]$ measures the "average" or "central tendency" of X .
What about its variability?

Definition
The variance of a random variable X with mean $E[X]=\mu$ is $\operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]$, often denoted σ^{2}.

The standard deviation of X is $\sigma=\sqrt{\operatorname{Var}[\mathrm{X}]}$
$\mu=\mathrm{E}[X]$ is about location; $\sigma=\sqrt{\operatorname{Var}(X)}$ is about spread

Two games:
a) flip I coin, win $Y=\$ 100$ if heads, $\$$ - 100 if tails
b) flip 100 coins, win $Z=$ (\#(heads) $-\#($ tails $)$) dollars

Same expectation in both: $\mathrm{E}[\mathrm{Y}]=\mathrm{E}[\mathrm{Z}]=0$
Same extremes in both: max gain = \$100; max loss = \$100

But
variability
is very different:

