Conditional Probability

 $\frac{\text{conditional probability and the chain rule}}{\text{General defn: } P(E \mid F) = \frac{P(EF)}{P(F)} \quad \text{where P(F) > 0}$

Implies: P(EF) = P(E|F) P(F) ("the chain rule")

General definition of Chain Rule:

 $P(E_1 E_2 \cdots E_n) = P(E_1) P(E_2 \mid E_1) P(E_3 \mid E_1, E_2) \cdots P(E_n \mid E_1, E_2, \dots, E_{n-1})$

Best of 3 tournament between local team and other team

First game: local team wins with probability $\frac{1}{2}$

- Given that they win current game, win the next game with probability 2/3
- Given that they lose current game, win next game with probability 1/3

What is the probability that they win a best of 3 tournament given that they win the first game.

Local team outcomes

game 1	game 2	game 3	outcome	event A: win the series	event B: win game 1	outcome probability
	W_		WW	1	1	1/3
	2/3	W 1/3	WL W	1	1	1/18
W 1/2	L^{\bullet}	2/3 L	WLL		1	1/9
		W	LWW	1		1/9
	W •	$< \frac{2}{1/3}$				
	$\checkmark \frac{1/3}{2/3}$	L	LWL			1/18
	L		LL			1/3

Tree diagrams are useful tools for reasoning about probabilities.

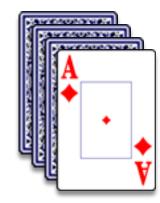
- I. Find sample space
- 2. Define events of interest
- 3. Determine outcome probabilities, by labeling edges
- 4. Compute event probabilities

Mathematical justification:

- Edge probabilities are conditional probabilities
- Chain rule

piling cards

¥



Deck of 52 cards randomly divided into 4 piles

13 cards per pile

Compute P(each pile contains an ace)

Solution:

$$\Xi_1 = \{ \underbrace{\bullet}_{in} \text{ any one pile } \}$$

$$E_2 = \{ \underbrace{\bullet}_{i} \& \underbrace{\bullet}_{i} \ in \ different \ piles \} \}$$

in different piles }

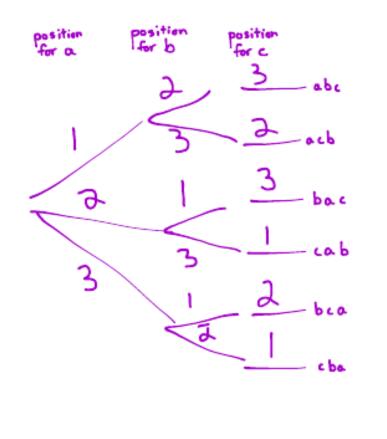
 $E_4 = \{ all four aces in different piles \}$

Compute $P(E_1 E_2 E_3 E_4)$

piling cards

 $P(E_1E_2E_3E_4) = P(E_1) P(E_2|E_1) P(E_3|E_1E_2) P(E_4|E_1E_2E_3)$

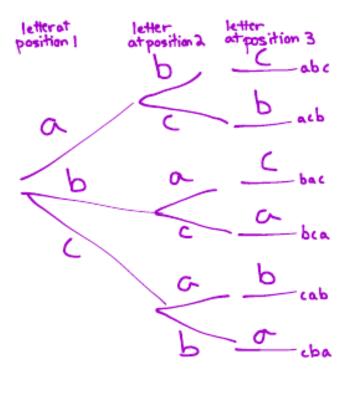
Permutations of {a,b,c}



positions:

2

3



A conceptual trick: what's randomized? a) *randomize* cards, deal sequentially b) sort cards, deal *randomly* into empty slots E in any one pile } =in different piles } $E_{2} =$ & $E_3 =$ in different piles } $E_4 = \{ all four aces in different piles \}$ $P(E_1E_2E_3E_4) = P(E_1) P(E_2|E_1) P(E_3|E_1E_2) P(E_4|E_1E_2E_3)$ $P(E_1)$ = 52/52 = 1 (A \checkmark can go anywhere) A conceptual trick: what's $P(E_2|E_1)$ = 39/51 (39 of 51 slots not in A \heartsuit pile) randomized? $P(E_3|E_1E_2) = 26/50$ (26 not in A, A, piles) randomize cards, deal a) sequentially into 4 piles $P(E_4|E_1E_2E_3) = 13/49 \text{ (13 not in } A \clubsuit, A \clubsuit, A \clubsuit \text{ piles)}$ sort cards, aces first, b) deal randomly into empty slots among 4 piles.

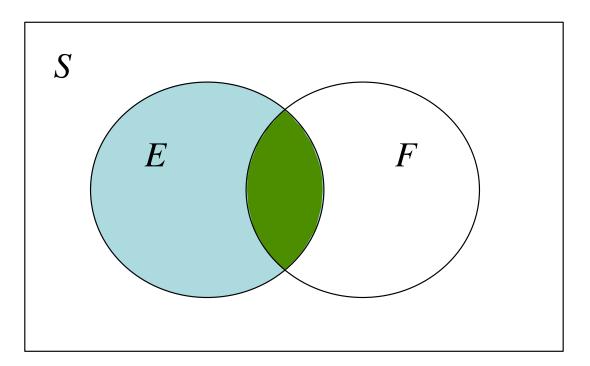
 $P(E_1E_2E_3E_4)$

= $P(E_1) P(E_2|E_1) P(E_3|E_1E_2) P(E_4|E_1E_2E_3)$

 $= (52/52) \cdot (39/51) \cdot (26/50) \cdot (13/49)$

 ≈ 0.105

E and F are events in the sample space S $E = EF \cup EF^{c}$



 $\mathsf{EF} \cap \mathsf{EF}^{\mathsf{c}} = \varnothing$ $\Rightarrow \mathsf{P}(\mathsf{E}) = \mathsf{P}(\mathsf{EF}) + \mathsf{P}(\mathsf{EF}^{\mathsf{c}})$

 $P(E) = P(EF) + P(EF^{c})$ = P(E|F) P(F) + P(E|F^{c}) P(F^{c}) = P(E|F) P(F) + P(E|F^{c}) (I-P(F))

weighted average, conditioned on event F happening or not.

More generally, if F1, F2, ..., Fn partition S (mutually

exclusive, $U_i F_i = S, P(F_i) > 0$), then

 $P(E) = \sum_{i} P(E|F_i) P(F_i)$

weighted average, conditioned on events F_i happening or not.

(Analogous to reasoning by cases; both are very handy.)

Sally has I elective left to take: either Phys or Chem. She will get A with probability 3/4 in Phys, with prob 3/5 in Chem. She flips a coin to decide which to take.

What is the probability that she gets an A?

$$P(A) = P(A|Phys)P(Phys) + P(A|Chem)P(Chem)$$

= (3/4)(1/2)+(3/5)(1/2)
= 27/40

Note that conditional probability was a means to an end in this example, not the goal itself. One reason conditional probability is important is that this is a common scenario.

6 red or white balls in an urn Probability of drawing 3 red w = 3balls, given 3 in urn? Rev. Thomas Bayes c. 1701-1761 Probability of 3 red balls in urn, given that I drew three?

Bayes Theorem

Bayes Theorem

Improbable Inspiration: The future of software may lie in the obscure theories of an 18th century cleric named Thomas Bayes

Los Angeles Times (October 28, 1996) By Leslie Helm, Times Staff Writer

When Microsoft Senior Vice President

Steve Ballmer [now CEO] first heard his company was

planning a huge investment in an Internet service offering... he went to Chairman Bill Gates with his concerns...

Gates began discussing the critical role of "Bayesian" systems...

source: http://www.ar-tiste.com/latimes_oct-96.html

Most common form:

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E)}$$

Expanded form (using law of total probability):

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E \mid F)P(F) + P(E \mid F^{c})P(F^{c})}$$

Proof:

$$P(F \mid E) = \frac{P(EF)}{P(E)} = \frac{P(E \mid F)P(F)}{P(E)}$$

Most common form:

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E)}$$

Expanded form (using law of total probability): $P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E \mid F)P(F) + P(E \mid F^{c})P(F^{c})}$

Why it's important: Reverse conditioning P(model | data) ~ P(data | model) Combine new evidence (E) with prior belief (P(F)) Posterior vs prior An urn contains 6 balls, either 3 red + 3 white or all 6 red. You draw 3; all are red. Did urn have only 3 red?

Can't tell

Suppose it was 3 + 3 with probability p=3/4. Did urn have only 3 red?

M = urn has 3 red + 3 white D = I drew 3 red

 $P(M \mid D) = P(D \mid M)P(M)/[P(D \mid M)P(M) + P(D \mid M^{c})P(M^{c})]$ $P(D \mid M) = (3 \text{ choose } 3)/(6 \text{ choose } 3) = 1/20$ $P(M \mid D) = (1/20)(3/4)/[(1/20)(3/4) + (1)(1/4)] = 3/23$

prior = 3/4; posterior = 3/23

Say that 60% of email is spam 90% of spam has a forged header 20% of non-spam has a forged header Let F = message contains a forged header Let J = message is spam What is P(J|F) ?

Solution:

$$P(J | F) = \frac{P(F | J)P(J)}{P(F | J)P(J) + P(F | J^{c})P(J^{c})}$$
$$= \frac{(0.9)(0.6)}{(0.9)(0.6) + (0.2)(0.4)}$$
$$\approx 0.871$$

 $(\mathbf{n} \mid \mathbf{x}) \mathbf{n} (\mathbf{x})$