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Conditional Probability 

P(	
 )	
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conditional probability and the chain rule 

General defn:                                    where P(F) > 0	


Implies:  P(EF) = P(E|F) P(F)       (“the chain rule”)	


General definition of Chain Rule:	




Best of 3 tournament between local team and other team 

First game: local team wins with probability ½	


Given that they win current game, win the next game with 
probability 2/3	


Given that they lose current game, win next game with 
probability 1/3	


What is the probability that they win a best of 3 tournament 
given that they win the first game.	
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Local team outcomes 
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Tree Diagrams 

Tree diagrams are useful tools for reasoning about 
probabilities.  	


1.  Find sample space	


2.  Define events of interest	

3.  Determine outcome probabilities, by labeling edges	


4.  Compute event probabilities	


Mathematical justification:	


•  Edge probabilities are conditional probabilities	


•  Chain rule	
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piling cards 
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piling cards 

Deck of 52 cards randomly divided into 4 piles	

13 cards per pile	

Compute P(each pile contains an ace)	

Solution:	


E1 = {      in any one pile }	


E2 = {       &       in different piles } 	


E3 = {                    in different piles }	


E4 = { all four aces in different piles }	


Compute P(E1 E2 E3 E4)	
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piling cards 

E1 = {      in any one pile }	


E2 = {       &       in different piles } 	


E3 = {                    in different piles }	


E4 = { all four aces in different piles }	


P(E1E2E3E4)	

= P(E1) P(E2|E1) P(E3|E1E2) P(E4|E1E2E3)	
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 2	
 3	
positions:	


A conceptual trick: what’s 
randomized?	

a)  randomize cards, deal 
sequentially	

b)  sort cards, deal randomly 
into empty slots	


Permutations of {a,b,c} 
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E1 = {      in any one pile }	


E2 = {       &       in different piles } 	


E3 = {                    in different piles }	


E4 = { all four aces in different piles }	

P(E1E2E3E4) 	
= P(E1) P(E2|E1) P(E3|E1E2) P(E4|E1E2E3)	

P(E1)      	
= 52/52 = 1 (A♥ can go anywhere)	


P(E2|E1) 	
= 39/51 (39 of 51 slots not in A♥ pile)	

P(E3|E1E2 ) 	
= 26/50 (26 not in A♥, A♠ piles)	

P(E4|E1E2E3) 	
= 13/49 (13 not in A♥, A♠, A♦ piles)	


piling cards 

A conceptual trick: what’s 
randomized?	

a)  	
randomize cards, deal 
sequentially into 4 piles	

b)  	
sort cards, aces first, 
deal randomly into empty 
slots among 4 piles.	
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piling cards 

E1 = {      in any one pile }	


E2 = {       &       in different piles } 	


E3 = {                    in different piles }	


E4 = { all four aces in different piles }	


P(E1E2E3E4)	


= P(E1) P(E2|E1) P(E3|E1E2) P(E4|E1E2E3)	


= (52/52)•(39/51)•(26/50)•(13/49)	


≈ 0.105	
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law of total probability 

E and F are events in the sample space S	


E = EF ∪ EFc	


EF ∩ EFc = ∅ 	


⇒ P(E) = P(EF) + P(EFc)	


S	


E                          F       	
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law of total probability 

P(E) = P(EF) + P(EFc)	

       = P(E|F) P(F) + P(E|Fc) P(Fc)	

       = P(E|F) P(F) + P(E|Fc) (1-P(F))	


More generally, if F1, F2, ..., Fn partition S (mutually 

exclusive, ∪i Fi = S, P(Fi)>0), then	


P(E) = ∑i P(E|Fi) P(Fi)	


(Analogous to reasoning by cases; both are very handy.)	


weighted average, 
conditioned on event 
F happening or not.	


weighted average, 
conditioned on events 
Fi happening or not.	
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total probability 

Sally has 1 elective left to take: either Phys or Chem.  She 
will get A with probability 3/4 in Phys, with prob 3/5 in 
Chem.  She flips a coin to decide which to take.  	


What is the probability that she gets an A?	


P(A) = P(A|Phys)P(Phys) + P(A|Chem)P(Chem)	


       = (3/4)(1/2)+(3/5)(1/2)	


       = 27/40	


Note that conditional probability was a means to an end in this example, not the goal itself.  
One reason conditional probability is important is that this is a common scenario.	
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Bayes Theorem 

Rev. Thomas Bayes c. 1701-1761	


Probability of 
drawing 3 red 
balls, given 3 in 

urn ?	


Probability of 3 red 
balls in urn, given 
that I drew three?	


w = ??	

r = ??	


w = 3	

r = 3	


6 red or white balls in an urn	




When Microsoft Senior Vice President ���
Steve Ballmer [now CEO] first heard his company was ���
                                planning a huge investment in an���
                                Internet service offering… he went ���
                                to Chairman Bill Gates with his ���
                                concerns…	


Bayes Theorem 

Improbable Inspiration:  The future ���
of software may lie in the obscure 
theories of an 18th century cleric 
named Thomas Bayes	

Los Angeles Times (October 28, 1996)	

By Leslie Helm, Times Staff Writer  	


Gates began discussing the critical role 
of “Bayesian” systems…	


source: http://www.ar-tiste.com/latimes_oct-96.html	
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Most common form:	


Expanded form (using law of total probability):	


Proof:	


Bayes Theorem 
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Most common form:	


Expanded form (using law of total probability):	


Bayes Theorem 

Why it’s important:	

Reverse conditioning	

P( model | data ) ~ P( data | model )	

Combine new evidence (E) with prior belief (P(F))	

Posterior vs prior	




w = ??	

r = ??	


An urn contains 6 balls, either 3 red + 3 white or all 6 red.  	

You draw 3; all are red.	

Did urn have only 3 red?	


Can’t tell	


Suppose it was 3 + 3 with probability p=3/4.	

Did urn have only 3 red?	


M = urn has 3 red + 3 white	

D = I drew 3 red	


P(M | D) = P(D | M)P(M)/[P(D | M)P(M)+ P(D | Mc)P(Mc)]	

  P(D | M) = (3 choose 3)/(6 choose 3) = 1/20	

  P(M | D) = (1/20)(3/4)/[(1/20)(3/4) + (1)(1/4)] = 3/23	


prior = 3/4 ;  posterior = 3/23	


Bayes Theorem 
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simple spam detection 

Say that 60% of email is spam	

90% of spam has a forged header	

20% of non-spam has a forged header	

Let F = message contains a forged header	

Let J = message is spam	


What is P(J|F) ?	


Solution:	



