Conditional Probability

General defn: $P(E \mid F)=\frac{P(E F)}{P(F)}$ where $\mathrm{P}(\mathrm{F})>0$

Implies: $P(E F)=P(E \mid F) P(F) \quad$ ("the chain rule")

General definition of Chain Rule:

$$
\begin{aligned}
& P\left(E_{1} E_{2} \cdots E_{n}\right)= \\
& \quad P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1}, E_{2}\right) \cdots P\left(E_{n} \mid E_{1}, E_{2}, \ldots, E_{n-1}\right)
\end{aligned}
$$

Best of 3 tournament between local team and other team
First game: local team wins with probability $1 / 2$
Given that they win current game, win the next game with probability $2 / 3$

Given that they lose current game, win next game with probability I/3

What is the probability that they win a best of 3 tournament given that they win the first game.

Local team outcomes

$$
\begin{aligned}
& \begin{array}{lllll}
\text { game } 1 & \text { game } 2 & \text { game } 3 & \text { outcome } & \begin{array}{c}
\text { event A: } \\
\text { win the } \\
\text { series }
\end{array}
\end{array} \begin{array}{c}
\text { event B: } \\
\text { win } \\
\text { game 1 }
\end{array} \quad \begin{array}{c}
\text { outcome } \\
\text { probability }
\end{array} \\
& \text { (2/3 }
\end{aligned}
$$

Tree Diagrams

Tree diagrams are useful tools for reasoning about probabilities.
I. Find sample space
2. Define events of interest
3. Determine outcome probabilities, by labeling edges
4. Compute event probabilities

Mathematical justification:

- Edge probabilities are conditional probabilities
- Chain rule

Deck of 52 cards randomly divided into 4 piles
13 cards per pile
Compute P (each pile contains an ace)
Solution:
$E_{1}=\left\{{ }^{"}\right.$ in any one pile $\}$
$E_{2}=\left\{\square^{\bullet} \&{ }^{\bullet}{ }_{i}\right.$ in different piles $\}$
$E_{3}=\left\{\bullet,{ }^{*}, \quad\right.$ in different piles $\}$
$\mathrm{E}_{4}=\{$ all four aces in different piles $\}$

Compute $P\left(E_{1} E_{2} E_{3} E_{4}\right)$

Permutations of $\{a, b, c\}$

A conceptual trick: what's randomized?
a) randomize cards, deal sequentially
b) sort cards, deal randomly into empty slots
positions:

$$
\begin{aligned}
& \mathrm{E}_{1}=\{\text { in any one pile }\} \\
& \mathrm{E}_{2}=\{\bullet \text { in different piles }\} \\
& \mathrm{E}_{3}=\{ \\
& \mathrm{E}_{4}=\{\text { all four aces in different piles }\} \\
& \mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3} \mathrm{E}_{4}\right) \\
& =\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{E}_{1}\right) P\left(\mathrm{E}_{3} \mid \mathrm{E}_{1} \mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{E}_{4} \mid \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}\right) \\
& =(52 / 52) \cdot(39 / 5 \mathrm{I}) \cdot(26 / 50) \cdot(\mathrm{I} 3 / 49) \\
& \approx 0.105
\end{aligned}
$$

E and F are events in the sample space S
$E=E F \cup E F^{c}$

$E F \cap E F^{c}=\varnothing$
$\Rightarrow P(E)=P(E F)+P\left(E F^{c}\right)$

$$
\begin{aligned}
P(E) & =P(E F)+P\left(E F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right)(I-P(F))
\end{aligned}
$$

More generally, if $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{n}}$ partition S (mutually exclusive, $\left.U_{i} F_{i}=S, P\left(F_{i}\right)>0\right)$, then
$P(E)=\sum_{i} P\left(E \mid F_{i}\right) P\left(F_{i}\right)$
weighted average,
F_{i} happening or not.
(Analogous to reasoning by cases; both are very handy.)

Sally has I elective left to take: either Phys or Chem. She will get A with probability $3 / 4$ in Phys, with prob $3 / 5$ in Chem. She flips a coin to decide which to take.

What is the probability that she gets an A?

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A}) & =\mathrm{P}(\mathrm{~A} \mid \text { Phys }) \mathrm{P}(\text { Phys })+\mathrm{P}(\mathrm{~A} \mid \text { Chem }) \mathrm{P}(\text { Chem }) \\
& =(3 / 4)(\mathrm{I} / 2)+(3 / 5)(\mathrm{I} / 2) \\
& =27 / 40
\end{aligned}
$$

Note that conditional probability was a means to an end in this example, not the goal itself. One reason conditional probability is important is that this is a common scenario.

Bayes Theorem
6 red or white balls in an urn

Probability of drawing 3 red balls, given 3 in urn ?

Rev.Thomas Bayes c. I701-I76I

Improbable Inspiration: The future of software may lie in the obscure theories of an $18^{\text {th }}$ century cleric named Thomas Bayes
Los Angeles Times (October 28, I996)
By Leslie Helm, Times Staff Writer
When Microsoft Senior Vice President

Steve Ballmer [now CEO] first heard his company was
 planning a huge investment in an Internet service offering... he went to Chairman Bill Gates with his concerns...

Gates began discussing the critical role of "Bayesian" systems...
source: http://www.ar-tiste.com/latimes oct-96.html

Most common form:

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Expanded form (using law of total probability):

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)}
$$

Proof:

$$
\begin{aligned}
& \text { oof: } \\
& P(F \mid E)=\frac{P(E F)}{P(E)}=\frac{P(E \mid F) P(F)}{P(E)}
\end{aligned}
$$

Most common form:

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Expanded form (using law of total probability):

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)}
$$

Why it's important:
Reverse conditioning
$\mathrm{P}($ model \mid data $) \sim P($ data | model $)$
Combine new evidence (E) with prior belief $(\mathrm{P}(\mathrm{F})$)
Posterior vs prior

An urn contains 6 balls, either 3 red +3 white or all 6 red. You draw 3; all are red.
Did urn have only 3 red?

Can't tell

Suppose it was $3+3$ with probability $p=3 / 4$.
 Did urn have only 3 red?
$M=$ urn has 3 red +3 white
D = I drew 3 red

$$
\begin{aligned}
P(M \mid D) & =P(D \mid M) P(M) /\left[P(D \mid M) P(M)+P\left(D \mid M^{c}\right) P\left(M^{c}\right)\right] \\
P(D \mid M) & =(3 \text { choose } 3) /(6 \text { choose } 3)=I / 20 \\
P(M \mid D) & =(I / 20)(3 / 4) /[(I / 20)(3 / 4)+(I)(I / 4)]=3 / 23
\end{aligned}
$$

prior $=3 / 4$; posterior $=3 / 23$

Say that 60% of email is spam
90% of spam has a forged header
20\% of non-spam has a forged header
Let $F=$ message contains a forged header
Let $J=$ message is spam
What is $P(J \mid F)$?
Solution:

$$
\begin{aligned}
P(J \mid F) & =\frac{P(F \mid J) P(J)}{P(F \mid J) P(J)+P\left(F \mid J^{c}\right) P\left(J^{c}\right)} \\
& =\frac{(0.9)(0.6)}{(0.9)(0.6)+(0.2)(0.4)} \\
& \approx 0.871
\end{aligned}
$$

