conditional probability

\mid

Conditional probability of E given F: probability that E occurs given that F has occurred.
"Conditioning on F "
Written as $\mathrm{P}(\mathrm{E} \mid \mathrm{F})$
Means " $P(E$, given F observed)"
Sample space S reduced to those
elements consistent with F (i.e. $\mathrm{S} \cap \mathrm{F}$)
Event space E reduced to those elements consistent with F (i.e. $\mathrm{E} \cap \mathrm{F}$)
With equally likely outcomes,

(

$$
P(E \mid F)=\frac{\# \text { of outcomes in } E \text { consistent with } F}{\# \text { of outcomes in } S \text { consistent with } F}=\frac{|E F|}{|S F|}=\frac{|E F|}{|F|}
$$

$$
P(E \mid F)=\frac{|E F|}{|F|}=\frac{|E F| /|S|}{|F| /|S|}=\frac{P(E F)}{P(F)}
$$

Suppose you flip two coins \& all outcomes are equally likely. What is the probability that both flips land on heads if...

- The first flip lands on heads?

$$
\begin{aligned}
& \text { Let } B=\{H H\} \text { and } F=\{H H, H T\} \\
& \begin{aligned}
P(B \mid F) & =P(B F) / P(F)=P(\{H H\}) / P(\{H H, H T\}) \\
& =(I / 4) /(2 / 4)=I / 2
\end{aligned}
\end{aligned}
$$

-At least one of the two flips lands on heads?
Let $A=\{H H, H T, T H\}, B A=\{H H\}$
$P(B \mid A)=|B A| /|A|=I / 3$

- At least one of the two flips lands on tails?

$$
\begin{aligned}
& \text { Let } G=\{T H, H T, T T\} \\
& P(B \mid G)=P(B G) / P(G)=P(\varnothing) / P(G)=0 / P(G)=0
\end{aligned}
$$

General defn: $P(E \mid F)=\frac{P(E F)}{P(F)}$ where $\mathrm{P}(\mathrm{F})>0$
Holds even when outcomes are not equally likely.
What if $P(F)=0$?
$P(E \mid F)$ undefined: (you can't observe the impossible)
Implies: $\mathrm{P}(E F)=\mathrm{P}(E \mid F) \mathrm{P}(F) \quad$ ("the chain rule")

General definition of Chain Rule:

$$
\begin{aligned}
& P\left(E_{1} E_{2} \cdots E_{n}\right)= \\
& \quad P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1}, E_{2}\right) \cdots P\left(E_{n} \mid E_{1}, E_{2}, \ldots, E_{n-1}\right)
\end{aligned}
$$

General defn: $P(E \mid F)=\frac{P(E F)}{P(F)}$ where $\mathrm{P}(\mathrm{F})>0$
Holds even when outcomes are not equally likely.
" $P(-\mid F)$ " is a probability law, i.e. satisfies the 3 axioms
Proof:
the idea is simple-the sample space contracts to F ; dividing all (unconditional) probabilities by $\mathrm{P}(\mathrm{F})$ correspondingly renormalizes the probability measure - see text for details; better yet, try it!
$E x: P(A \cup B) \leq P(A)+P(B)$
$\therefore P(A \cup B \mid F) \leq P(A \mid F)+P(B \mid F)$

sending bit strings

Bit string with m 0 's and n I's sent on the network
All distinct arrangements of bits equally likely
$E=$ first bit received is a I
$\mathrm{F}=\mathrm{k}$ of first r bits received are I's
What's $P(E \mid F)$?
Solution I:

$$
\begin{aligned}
& P(E)=\frac{n}{m+n} \quad P(F)=\frac{\binom{n}{k}\binom{m}{r-k}}{\binom{m+n}{r}} \\
& P(F \mid E)=\frac{\binom{n-1}{k-1}\binom{m}{r-k}}{\binom{m+n-1}{r-1}} \\
& P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{P(F \mid E) P(E)}{P(F)}=\frac{k}{r}
\end{aligned}
$$

Bit string with m 0 's and n I's sent on the network
All distinct arrangements of bits equally likely
$E=$ first bit received is a I
$\mathrm{F}=\mathrm{k}$ of first r bits received are I's
What's $P(E \mid F)$?
Solution 2:
Observe:

$P(E \mid F)=P($ picking one of k l's out of r bits $)$
So:
$P(E \mid F)=k / r$

Deck of 52 cards randomly divided into 4 piles
13 cards per pile
Compute P (each pile contains an ace)
Solution:

$$
\begin{aligned}
& \mathrm{E}_{1}=\{\text { in some pile }\} \\
& \mathrm{E}_{2}=\{\text { in in different piles }\} \\
& \mathrm{E}_{3}=\{\text { in different piles }\} \\
& \mathrm{E}_{4}=\{\text { all four aces in different piles }\}
\end{aligned}
$$

Compute $\mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3} \mathrm{E}_{4}\right)$

$$
\begin{aligned}
& \mathrm{E}_{1}=\{\text { in some pile }\} \\
& \mathrm{E}_{2}=\{\text { in different piles }\} \\
& \mathrm{E}_{3}=\{\text { in different piles }\} \\
& \mathrm{E}_{4}=\{\text { all four aces in different piles }\} \\
& \begin{aligned}
& \left.\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3} \mathrm{E}_{4}\right) \\
& =\mathrm{P}\left(\mathrm{E}_{1}\right) P\left(\mathrm{E}_{2} \mid \mathrm{E}_{1}\right) P\left(\mathrm{E}_{3} \mid \mathrm{E}_{1} \mathrm{E}_{2}\right) P\left(\mathrm{E}_{4} \mid \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}\right)
\end{aligned}
\end{aligned}
$$

piling cards

```
E
E
E
E
```



```
P(E) = I
P(E E | E | ) = 39/5I (39 of 5I slots not in AH pile) A conceptual trick: what's
P( }\mp@subsup{E}{3}{}|\mp@subsup{E}{1}{}\mp@subsup{E}{2}{})=26/50 (26 not in AS,AH piles
P( }\mp@subsup{E}{4}{}|\mp@subsup{E}{1}{}\mp@subsup{E}{2}{}\mp@subsup{E}{3}{})=13/49 (13 not in AS,AH,AD piles
```

A conceptual trick: what's randomized?
a) randomize cards, deal sequentially into piles
b) sort cards, aces first, deal randomly into piles.

$$
\begin{aligned}
& \mathrm{E}_{1}=\{\text { in any one pile }\} \\
& \begin{aligned}
& \mathrm{E}_{2}=\{\text { in different piles }\} \\
& \mathrm{E}_{3}=\{ \\
& \mathrm{E}_{4}=\{\text { all four aces in different piles }\} \\
& \mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3} \mathrm{E}_{4}\right) \\
&=\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{E}_{3} \mid \mathrm{E}_{1} \mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{E}_{4} \mid \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}\right) \\
&=(39 \cdot 26 \cdot 13) /(51 \cdot 50 \cdot 49) \\
& \approx 0.105
\end{aligned}
\end{aligned}
$$

law of total probability

E and F are events in the sample space S

$$
\mathrm{E}=\mathrm{EF} \cup \mathrm{EF}{ }^{c}
$$

$$
\begin{gathered}
E F \cap E F C=\varnothing \\
\Rightarrow P(E)=P(E F)+P(E F c)
\end{gathered}
$$

law of total probability

$$
\begin{aligned}
P(E)= & P(E F)+P\left(E F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right)(1-P(F))
\end{aligned}
$$

weighted average, conditioned on event F happening or not.

More generally, if $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{n}}$ partition S (mutually
exclusive, $\left.\bigcup_{i} F_{i}=S, P\left(F_{i}\right)>0\right)$, then

$$
P(E)=\sum_{i} P\left(E \mid F_{i}\right) P\left(F_{i}\right)
$$

weighted average, conditioned on events F_{i} happening or not.

Example

Pick a random ball from one of 3 boxes box I, prob I/2: 5 red balls 5 green balls box 2, prob I/3: I red ball 6 green balls box 3, prob I/6: 8 red balls 4 green balls

What is the probability of picking a green ball?
What is the probability that we chose from box 2 given that we picked a green ball?

