

Readings: BT 1.1-1.2, Rosen 6.1-6.2

Sample space: S is the set of all possible outcomes of an experiment (Ω in your text book-Greek uppercase omega)

Coin flip:
Flipping two coins:
Roll of one 6 -sided die: $S=\{1,2,3,4,5,6\}$
\# emails in a day:
YouTube hrs. in a day:

$$
S=\{x: x \in Z, x \geq 0\}
$$

$$
S=\{x: x \in R, 0 \leq x \leq 24\}
$$

events

Events: $\mathbf{E} \subseteq \mathbf{S}$ is some subset of the sample space
Coin flip is heads:

$$
\mathrm{E}=\{\mathrm{Head}\}
$$

At least one head in 2 flips:
$E=\{(H, H),(H, T),(T, H)\}$
Roll of die is 3 or less:
$E=\{I, 2,3\}$
\# emails in a day < 20:
$E=\{x: x \in Z, 0 \leq x<20\}$
Wasted day (>5 YT hrs):
$E=\{x: x \in R, x>5\}$

axioms of probability

Intuition: Probability as the relative frequency of an event

$$
\operatorname{Pr}(E)=\lim _{n \rightarrow \infty}(\# \text { of occurrences of } E \text { in } n \text { trials }) / n
$$

Axiom I: $0 \leq \operatorname{Pr}(E) \leq 1$
Axiom 2: $\operatorname{Pr}(S)=1$
Axiom 3: If E and F are mutually exclusive $(E F=\varnothing)$, then

$$
\operatorname{Pr}(E \cup F)=\operatorname{Pr}(E)+\operatorname{Pr}(F)
$$

For any sequence $E_{1}, E_{2}, \ldots, E_{\mathrm{n}}$ of mutually exclusive events,

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{n} E_{i}\right)=\operatorname{Pr}\left(E_{1}\right)+\cdots+\operatorname{Pr}\left(E_{n}\right)
$$

$-\operatorname{Pr}(\bar{E})=I-\operatorname{Pr}(E)$

- If $E \subseteq F$, then $\operatorname{Pr}(E) \leq \operatorname{Pr}(F)$
$-\operatorname{Pr}(E \cup F)=\operatorname{Pr}(E)+\operatorname{Pr}(F)-\operatorname{Pr}(E F)$
- And many others

equally likely outcomes

Simplest case: sample spaces with equally likely outcomes.

Coin flips:
Flipping two coins:
Roll of 6-sided die:
$\operatorname{Pr}($ each outcome $)=\frac{1}{|S|}$
$S=\{$ Heads, Tails $\}$
$\mathrm{S}=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$
$S=\{I, 2,3,4,5,6\}$

uniform distribution

In that case,

$$
\operatorname{Pr}(E)=\frac{\text { number of outcomes in } E}{\text { number of outcomes in } S}=\frac{|E|}{|S|}
$$

probability calculations can be slippery

Intuition can mislead you

4-step approach:
I. Find the sample space
2. Define events of interest
3. Determine outcome probabilities
4. Compute event probabilities

Strange dice

You go to a bar. The guy sitting next to you pulls out dice. He offers you a \$100 wager:

Each player selects one die and rolls it once.
The player with the lower value pays the other player $\$ 100$.

You picked B, he picked A

He gives you another chance: so you choose A

Bizarre?

C beats A with probability $5 / 9$, A beats B with probability $5 / 9$, B beats C with probability $5 / 9^{\prime}$

card flipping

52 card deck. Cards flipped one at a time.
After first ace (of any suit) appears, consider next card

$$
\operatorname{Pr}(\text { next card }=\text { ace of spades })<\operatorname{Pr}(\text { next card }=2 \text { of clubs }) ?
$$

Case I: Take Ace of Spades out of deck
Shuffle remaining 5I cards, add ace of spades after first ace $|S|=52!\quad$ (all cards shuffled)
$|E|=5 \mathrm{I}$! (only I place ace of spades can be added)
Case 2: Do the same thing with the 2 of clubs
$|S|$ and $|E|$ have same size
So,

$$
\operatorname{Pr}(\text { next }=\text { Ace of spades })=\operatorname{Pr}(\text { next }=2 \text { of clubs })=1 / 52
$$

Ace of Spades: 2/6

 2 of Clubs: 2/6

Theory is the same for a 3 -card deck; $\operatorname{Pr}=2!/ 3!=1 / 314$

n persons at a party throw hats in middle, select at random. What is $\operatorname{Pr}($ no one gets own hat)?

What is the sample space S ?

People:	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
Hats:	H_{4}	H_{2}	H_{5}	H_{1}	H_{3}

l.e., a sample point is a permutation π of I, \ldots, n

4	2	5	1	3

$|S|=n!$
n persons at a party throw hats in middle, select at random. What is Pr (no one gets own hat)?
$\operatorname{Pr}($ no one gets own hat) $=$
I - $\operatorname{Pr}($ someone gets own hat)

$\operatorname{Pr}($ someone gets own hat $)=\operatorname{Pr}\left(\bigcup_{i=1}^{n}, E_{i}\right)$, where $E_{i}=$ event that person i gets own hat
$\operatorname{Pr}\left(\cup_{i=1}^{n} E_{i}\right)=\sum_{i} \operatorname{P}\left(E_{i}\right)-\sum_{i<j} \operatorname{Pr}\left(E_{i} E_{j}\right)+\sum_{i<j<k} \operatorname{Pr}\left(E_{i} E_{j} E_{k}\right) \ldots$
$E_{i}=$ event that person i gets own hat: $\pi(i)=i$

Counting single events:
$\mathrm{i}=2$

\boldsymbol{v}	2	$?$	$?$

$\left|E_{i}\right|=(n-I)$! for all i
Counting pairs:

$$
\begin{aligned}
& E_{i} E_{j}: \pi(i)=i \& \pi(j)=j \\
& \left|E_{i} E_{j}\right|=(n-2)!\text { for all } i, j
\end{aligned}
$$

\[

\]

All points in $E_{2} \cap E_{5}$
n persons at a party throw hats in middle, select at random. What is Pr (no one gets own hat)?
$E_{i}=$ event that person i gets own hat

$\operatorname{Pr}\left(\cup_{i=1}^{n} E_{i}\right)=\sum_{i} P\left(E_{i}\right)-\sum_{i<j} \operatorname{Pr}\left(E_{i} E_{j}\right)+\sum_{i<j<k} \operatorname{Pr}\left(E_{i} E_{j} E_{k}\right) \ldots$
$\operatorname{Pr}(\mathrm{k}$ fixed people get own back) $=(n-k)!/ n!$
$\binom{n}{k}$ times that $=\frac{n!}{k!(n-k)!} \frac{(n-k)!}{n!}=I / k!$
$\operatorname{Pr}($ none get own $)=1-\operatorname{Pr}($ some do $)=$

$$
I-I / I!+I / 2!-I / 3!+I / 4!\ldots+(-I)^{n} / n!\approx I / e \approx .37
$$

hats

$\operatorname{Pr}($ none get own $)=1-\operatorname{Pr}($ some do $)=$

$$
1-I+I / 2!-I / 3!+I / 4!\ldots+(-I)^{n} / n!\approx e^{-1} \approx .37
$$

The Monty Hall Problem

- Suppose you're on a game show, and you're given the choice of three doors. Behind one door is a car, behind the other, goats. You pick a door, say number I, and the host, who knows what's behind the doors, opens another door, say number 3, which has a goat. He says to you, "Do you want to pick door number 2?" Is it to your advantage to switch your choice of doors?
- Assumptions:
- The car is equally likely to be behind each of the doors.
- The player is equally likely to pick each of the three doors, regardless of the car's location
- After the player picks a door, the host must open a different door with a goat behind it and offer the player the choice of staying with the original door or switching
- If the host has a choice of which door to open, then he is equally likely to select each of them.

Find the Sample Space

Define events of interest

Determine outcome probabilities

24

Bizarre?

C beats A with probability $5 / 9$,
A beats B with probability $5 / 9$,
B beats C with probability $5 / 9^{\prime}$

- Final Wager: \$1000
- Instead of rolling each die once, you each roll twice, and score is sum of rolls
- This time he agrees to go first.
- He chooses B.
- So naturally, you choose A.

Conclusion

Two rolls:

$A \prec B \prec C \prec A$,

