
4: Discrete probability 

Readings: BT 1.1-1.2, Rosen 6.1-6.2 



sample spaces 

Sample space:  S is the set of all possible outcomes of an 
experiment  (Ω in your text book–Greek uppercase omega)	


 Coin flip:    	
S = {Heads, Tails}	


 Flipping two coins: 	
S = {(H,H), (H,T), (T,H), (T,T)}	


 Roll of one 6-sided die: 	
S = {1, 2, 3, 4, 5, 6}	


 # emails in a day: 	
S = { x : x ∈ Z,  x ≥ 0 }	


 YouTube hrs. in a day: 	
S = { x : x ∈ R, 0 ≤ x ≤ 24 }	




events 

Events:  E ⊆ S is some subset of the sample space	


 Coin flip is heads:  	
E = {Head}	


 At least one head in 2 flips: 	
E = {(H,H), (H,T), (T,H)}	


 Roll of die is 3 or less: 	
E = {1, 2, 3}	


 # emails in a day < 20: 	
E = { x : x ∈ Z,  0 ≤ x < 20}	


 Wasted day (>5 YT hrs): 	
E = { x : x ∈ R,  x > 5 }	




axioms of probability 

Intuition:  Probability as the relative frequency of an event	


Pr(E) = limn→∞ (# of occurrences of E in n trials)/n	


Axiom 1:  0 ≤ Pr(E) ≤ 1	


Axiom 2:  Pr(S) = 1	


Axiom 3:  If E and F are mutually exclusive (EF = ∅), then	


	
 	
Pr(E ∪ F) = Pr(E) + Pr(F)      	


For any sequence E1, E2, …, En of mutually exclusive events,	




implications of axioms 

- If E ⊆ F,  then Pr(E) ≤ Pr(F)	


- Pr(E∪F) = Pr(E) + Pr(F) – Pr(EF)	


E	
 F	


- Pr(E) = 1 - Pr(E)	


- And many others	




equally likely outcomes 

 Simplest case: sample spaces with equally likely outcomes.	


 Coin flips:	
 	
 	
S = {Heads, Tails}	

 Flipping two coins: 	
S = {(H,H),(H,T),(T,H),(T,T)}	

 Roll of 6-sided die: 	
S = {1, 2, 3, 4, 5, 6}	


 Pr(each outcome) = 	


 In that case, 	

uniform distribution  



probability calculations can be slippery 

Intuition can mislead you 	


4-step approach:	


1.  Find the sample space	


2.  Define events of interest	


3.  Determine outcome probabilities	


4.  Compute event probabilities	




Strange dice 

You go to a bar.  The guy sitting next to you pulls out dice.	


He offers you a $100 wager:	


Each player selects one die and rolls it once. 	


The player with the lower value pays the other player $100.	


you him 
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You picked B, he picked A 



He gives you another chance: so you choose A 

10 
One final time: you get die C 



Bizarre? 
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card flipping 



card flipping 

 52 card deck.  Cards flipped one at a time.	


 After first ace (of any suit) appears, consider next card	


 Pr(next card = ace of spades) < Pr(next card = 2 of clubs) ?	


 Case 1:  Take Ace of Spades out of deck	


 Shuffle remaining 51 cards, add ace of spades after first ace	


 |S| = 52! 	
(all cards shuffled)	


 |E| = 51! 	
(only 1 place ace of spades can be added)	

 Case 2:  Do the same thing with the 2 of clubs	


 |S| and |E| have same size	


 So, ���
 Pr(next = Ace of spades) = Pr(next = 2 of clubs) = 1/52	




Ace of Spades: 2/6	
 2 of Clubs: 2/6	


Theory is the same for a 3-card deck; Pr = 2!/3! = 1/3	
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hats 

15 



What is the sample space S?	


  People: ���
  Hats:	


  I.e., a sample point is a permutation π of 1, …, n	


|S| = n!	


hats 
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P1 P2 P3 P4 P5 

H4 H2 H5 H1 H3 

4 2 5 1 3 

n persons at a party throw hats in middle, select at 
random.   What is Pr(no one gets own hat)?	




n persons at a party throw hats in middle, select at 
random.  What is Pr(no one gets own hat)?	


Pr(no one gets own hat) = ���
    1 – Pr(someone gets own hat)  	


Pr(someone gets own hat) = Pr(∪n  Ei), where���
Ei = event that person i gets own hat	


Pr(∪n  Ei) =Σi P(Ei) –Σi<j Pr(Ei Ej)+Σi<j<k Pr(Ei Ej Ek)…	


hats 

i=1	
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i=1	




Ei = event that person i gets own hat:  π(i) = i	


Counting single events:                    	


   |Ei| = (n-1)! for all i	


Counting pairs:	


   EiEj :  π(i) = i  & π(j) = j	


   |EiEj| = (n-2)! for all i, j	


hats: events 
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? 2 ? ? 5 

i=2	
 i=5	


All points in E2 ∩ E5	


4 2 1 3 5 
A sample point 	

in E2 (also in E5)	


i=2	


? 2 ? ? ? All points in E2	


i=2	




n persons at a party throw hats in middle, select at 
random.  What is Pr(no one gets own hat)?	


Ei = event that person i gets own hat	


Pr(∪n  Ei) =Σi P(Ei) –Σi<j Pr(Ei Ej)+Σi<j<k Pr(Ei Ej Ek)…	


Pr(k fixed people get own back)  = (n-k)!/n!	


(  ) times that =                                 = 1/k!	


Pr(none get own) = 1-Pr(some do) =���
1 – 1/1! + 1/2! – 1/3! + 1/4! … + (-1)n/n!  ≈ 1/e ≈ .37	


hats 

i=1	


       n!    (n-k)!	

k!(n-k)!    n!   	


n	

k	
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Pr(none get own) = 1 - Pr(some do) =���
1 – 1 + 1/2! – 1/3! + 1/4! … + (-1)n/n!  ≈ e-1 ≈ .37	


Oscillates forever, but 
quickly converges to 1/e 	


e-1	
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The Monty Hall Problem 

•  Suppose you’re on a game show, and you’re given the choice of 
three doors. Behind one door is a car, behind the other, goats. 
You pick a door, say number 1, and the host, who knows what’s 
behind the doors, opens another door, say number 3, which has 
a goat. He says to you, “Do you want to pick door number 2?” Is 
it to your advantage to switch your choice of doors?	


•  Assumptions:	

–  The car is equally likely to be behind each of the doors.	


–  The player is equally likely to pick each of the three doors, 
regardless of the car’s location	


–  After the player picks a door, the host must open a different door 
with a goat behind it and offer the player the choice of staying with 
the original door or switching	


–  If the host has a choice of which door to open, then he is equally 
likely to select each of them.	
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Find the Sample Space 

22 
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Define events of interest 



Determine outcome probabilities 
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Bizarre? 

•  Final Wager: $1000	

–  Instead of rolling each die once, you each roll twice, and 

score is sum of rolls	


–  This time he agrees to go first.	


•  He chooses  B.	


•  So naturally, you choose A.	
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One roll: 

Two rolls: 

Conclusion 


