## Lecture 2: Counting



Rosen, Secs 5.1-5.5, BT Section 1.6

How many ways to do X ?
$X=$ "Choose an integer between one and ten."
$X=$ "Walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine."


How many ways to do X ?
$X=$ "Choose an integer between one and ten."
$\mathrm{X}=$ "Walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine."


## the basic principle of counting (product rule)

If there are $\mathbf{m}$ outcomes from some event $\mathbf{A}$, followed sequentially by $n$ outcomes from some event $B$, then there are... $\quad \mathrm{m} \times \mathrm{n}$ outcomes overall.

$B, n=2$
$4 \times 2=8$ outcomes

Generalizes to more events.


How many n-bit numbers are there?

$$
2 \cdot 2 \cdot \ldots \cdot 2=2^{n}
$$

How many subsets of a set of size n are there?
$\{1,2,3, \ldots, n\}$
Set contains 1 or doesn't contain 1 .
Set contains 2 or doesn't contain 2.
Set contains 3 or doesn't contain 3...

$$
2 \cdot 2 \cdot \ldots \cdot 2=2^{n}
$$

How many 4-character passwords are there if each character must be one of $a, b, c, \ldots, z, 0,1,2, \ldots, 9$ ?

$$
36 \cdot 36 \cdot 36 \cdot 36=1,679,616 \approx 1.7 \text { million }
$$

Same question, but now characters cannot be repeated...

$$
36 \cdot 35 \cdot 34 \cdot 33=1,413,720 \approx 1.4 \text { million }
$$

How many arrangements of the letters $\{a, b, c\}$ are possible (using each once, no repeat, order matters)?

| a b c | b a c |  |
| :---: | :---: | :---: |
| a c b | b c a | c |

More generally, how many arrangements of $n$ distinct items are possible?

$$
n \cdot(n-1) \cdot(n-1) \cdot \ldots \cdot 1=n!\quad(n \text { factorial })
$$

Q. How many permutations of DOGIE are there?

$$
5!=120
$$

Q. How many of DOGGY ?

$$
5!/ 2!=60
$$

$\mathrm{DOG}_{1} \mathrm{G}_{2} \mathrm{Y}$
$\mathrm{DOG}_{2} \mathrm{G}_{1} \mathrm{Y}$
Q. How many of GODOGGY?

$$
\frac{7!}{3!2!1!1!}=420
$$

Your dark elf avatar can carry three objects chosen from:


How many ways can he/she be equipped?

$$
\frac{5 \cdot 4 \cdot 3}{3!}=\frac{5!}{3!\cdot 2!}=10
$$

Combinations: Number of ways to choose r things from n things

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

Pronounced "n choose r" aka "binomial coefficients"

$$
\text { E.g., }\binom{n}{2}=\frac{n(n-1)}{2}=\Theta\left(n^{2}\right)
$$

$$
(x+y)^{n}=\sum_{k}\binom{n}{k} x^{k} y^{n-k}
$$

Proof 1: Induction ...
Proof 2: Counting

$$
(x+y) \cdot(x+y) \cdot(x+y) \cdot \ldots \cdot(x+y)
$$

Pick either $x$ or $y$ from first factor
Pick either $x$ or $y$ from second factor
Pick either x or y from nth factor
How many ways to get exactly k x's?

## an identity with binomial coefficients

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Proof:

$$
\sum_{k=0}^{n}\binom{n}{k}=\sum_{k=0}^{n}\binom{n}{k} 1^{k} 1^{n-k}=(1+1)^{n}=2^{n}
$$

How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going North and East?


A: Changing the visualization often helps. Instead of tracing paths on the grid above, list choices. You walk 7 blocks; at each intersection choose N or E ; must choose N $\binom{7}{3}=35$ exactly 3 times.

How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going North and East, if I want to stop at Starbucks on the way?


## Other problems

10 people of different heights. How many ways to line up 5 of them?

In height order?
\# of ways to rearrange letters in word SYSTEMS

## Other problems

\# of 7 digit numbers (decimal) with at least one repeating digit? (allowed to have leading zeros).

