CSE 312: Foundations of Computer Science, II

CSE 312: Foundations of Computer Science, II

Instructor: Anna R Karlin (karlin@cs.washington.edu)
Tas:
Dimitrios Gklezakos

Stephen Jonany

Kane Swanson

CSE 312: Foundations of Computer Science, II

Course website
http://www.cs.washington.edu/312 /

Calendar will have everything on it!

CSE 312: Foundations of Computer Science, II

- Probability and statistics
- Books Introduction to Probability (2 ${ }^{\text {nd }}$ ed.)
Bertsekas and Tsitsiklis [required] Discrete Mathematics and its Applications
Rosen [optional]
- Slides

Most are minor mutations of slides prepared by previous instructors of this course: James Lee, Larry Ruzzo, Pedro Domingos

CSE 312: Foundations of Computer Science, II

- Homeworks ~ 40\%

Weekly (Out Wed eve, due Thursday in section) we will grade a random subset of problems.
-Daily problem ~ 5-10\%
shouldn't take more than 10-20 minutes. due at the beginning of most classes. can skip it 4 times during the quarter.

- Midterm \& Final ~20\% \& 35\%

Lots of office hours,
 starting next week!

- Probability

Counting
Basic probability
Conditional probability
Random variables
Discrete and continuous distributions
Expectation and variance
Tail bounds and the central limit theorem

- Statistics

Maximum-likelihood estimation
Bayesian estimation
Hypothesis testing
Linear regression
Machine learning

pretend you're a doctor

You are trying to diagnose the
 probability that a woman with a positive mammogram has breast cancer, even though she's in a lowrisk group: 40-50 years old.

- Probability of a woman having breast cancer is 0.8%.
- If someone has cancer, probability of
a positive mammogram is $\mathbf{9 0 \%}$.
- If someone doesn't have cancer, probability of a positive mammogram is 7%.

A woman walks into your office with a positive test.
What's the probability that she has breast cancer?

pretend you're a lawyer

OJ simpson murder trial

Prosecutors:

"A slap is a prelude to homicide."
Defense:
"Less than 1 in 2500 men who commit domestic abuse go on to commit homicide."

Both were considering the wrong question:
If a woman is murdered and she has been domestically abused, the chances are 90\% that her husband is the killer.

Bayes rule

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]}
$$

DETFIDX

- Reasoning under uncertainty
- Understanding massive data
- Learning patterns
- Exposing liars and idiots
- Making \$\$\$ without coding

- Probability

Counting
Basic probability
Conditional probability
Random variables
Discrete and continuous distribution Expectation and variance
Tail bounds and the central limit the

- Statistics

Maximum-likelihood estimation
Bayesian estimation
Hypothesis testing
Linear regression
Machine learning

