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Events 

Any set E ⊆ S is called an event 
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Random Variable 

A Random Variable is a function from S to reals 

Examples: 

X = value of  white die in a two-dice roll 

X(3,4) = 3,  X(1,6) = 1 

Y = sum of  values of  the two dice 

Y(3,4) = 7,  Y(1,6) = 7 

Let S be sample space in a probability distribution 



Notational Conventions 
Use letters like A, B, C for events 

Use letters like X, Y, f, g for R.V.’s 

R.V. = random variable 
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X: {TT, TH, HT, HH} → {0, 1, 2} counts the 
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Two Views of  Random Variables 

Input to the 
function is 
random 

Randomness is “pushed” to 
the values of  the function 

Think of  a R.V. as  

A function from S to the reals R 

Or think of  the induced distribution on R 

Given a distribution, a random variable 
 transforms it into a distribution on reals 



Two dice 

I throw a white die and a black die. 

Sample space S =  
 { (1,1),   (1,2),     (1,3),   (1,4),    (1,5),    (1,6), 
   (2,1),   (2,2),    (2,3),    (2,4),    (2,5),    (2,6), 
   (3,1),   (3,2),    (3,3),    (3,4),    (3,5),    (3,6), 
   (4,1),   (4,2),    (4,3),    (4,4),    (4,5),    (4,6), 
   (5,1),   (5,2),    (5,3),    (5,4),    (5,5),    (5,6), 
   (6,1),   (6,2),    (6,3),    (6,4),    (6,5),    (6,6) } 

X = sum of  both dice 

function with X(1,1) = 2, X(1,2) = 3, …, X(6,6)=12 

Probability 
mass function 
p.m.f. 



It’s a Floor Wax And a Dessert Topping 

It’s a function on the 
sample space S 

It’s a variable with a 
probability distribution 
on its values 

You should be comfortable 
with both views 



Two dice 

I throw a white die and a black die. 

Sample space S =  
 { (1,1),   (1,2),     (1,3),   (1,4),    (1,5),    (1,6), 
   (2,1),   (2,2),    (2,3),    (2,4),    (2,5),    (2,6), 
   (3,1),   (3,2),    (3,3),    (3,4),    (3,5),    (3,6), 
   (4,1),   (4,2),    (4,3),    (4,4),    (4,5),    (4,6), 
   (5,1),   (5,2),    (5,3),    (5,4),    (5,5),    (5,6), 
   (6,1),   (6,2),    (6,3),    (6,4),    (6,5),    (6,6) } 

X = sum of  both dice 

function with X(1,1) = 2, X(1,2) = 3, …, X(6,6)=12 

Probability 
mass function 
p.m.f. 



From Random Variables to Events 

For any random variable X and value a,  
we can define the event A that X = a 

Pr(A)  =  Pr(X=a)  =  Pr( {t ∈ S | X(t)=a} ) 

Note that each event in the induced distribution 
 corresponds to some event in the original one. 



Pr(X = a)  =   

Pr({t ∈ S| X(t) = a}) 

Two Coins Tossed 
X: {TT, TH, HT, HH} → {0, 1, 2} counts # of  heads 
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X 

= Pr({t ∈ S| X(t) = 1}) 

= Pr({TH, HT}) = ½ 

Pr(X = 1) 



Two dice 

I throw a white die and a black die. 

Sample space S =  
 { (1,1),   (1,2),     (1,3),   (1,4),    (1,5),    (1,6), 
   (2,1),   (2,2),    (2,3),    (2,4),    (2,5),    (2,6), 
   (3,1),   (3,2),    (3,3),    (3,4),    (3,5),    (3,6), 
   (4,1),   (4,2),    (4,3),    (4,4),    (4,5),    (4,6), 
   (5,1),   (5,2),    (5,3),    (5,4),    (5,5),    (5,6), 
   (6,1),   (6,2),    (6,3),    (6,4),    (6,5),    (6,6) } 

X = sum of  both dice 

Pr( X = 7 ) =  6/36 = 1/6 



X has a prob. 
distribution on  
its values 

X is a function  
on the sample space S 

Definition: Expectation 
The expectation, or expected value of  a 
random variable X is written as E[X], and is 

Σ Pr(t) X(t) = Σ k Pr[X = k] 
t ∈S k 

E[X] = 

(assuming X takes values in the naturals) 
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X = # of  heads 
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Distribution 
 on the reals! 

Σ Pr(t) X(t) = Σ k Pr[X = k] 
t ∈S k 

E[X] = 



Σ Pr(t) X(t) = Σ k Pr[X = k] 
t ∈S k 

Quick 
check: 

Pr(X = a)  =  Pr({t ∈ S| X(t) = a}) 



A Quick Calculation… 
What if  I flip a coin 3 times?  What is the 
expected number of  heads? 

E[X] = (1/8)×0 + (3/8)×1 + (3/8)×2 + (1/8)×3 = 1.5 

But Pr[ X = 1.5 ] = 0 

Moral: don’t always expect the expected. 
Pr[ X = E[X] ] may be 0 ! 



Type Checking 

P( B ) 

E( X ) 

B must be an event 

X must be a R.V. 

cannot do P( R.V. ) or E( event ) 



Operations on R.V.s 

You can sum them, take differences,  
 or do most other math operations… 

E.g., (X + Y)(t) = X(t) + Y(t) 

(X*Y)(t) = X(t) * Y(t) 

(XY)(t) = X(t)Y(t) 



Random variables 
and expectations  

allow us to give elegant 
solutions to  

problems that seem 
really really messy… 



If  I randomly put 100 letters 
into 100 addressed 
envelopes, on average how 
many letters will end up in 
their correct envelopes? 

On average, in class of  
size m, how many pairs of  
people will have the same 
birthday? 

Pretty messy with direct counting… 



The new tool is called  
“Linearity of  Expectation” 



Linearity of  Expectation 

If  Z = X+Y, then 

E[Z] = E[X] + E[Y] 

Even if  X and Y are not independent 



By Induction 
E[X1 + X2 + … + Xn] =  

E[X1] + E[X2] + …. + E[Xn] 

The expectation  
of  the sum  

= 
The sum of  the 

expectations 



Expectation of  a Sum of  r.v.s 

= Sum of  their Expectations 

even when r.v.s are not independent! 

Expectation of  a Product of  r.v.s 

= Product of  their Expectations 

ONLY when r.v.s are independent! 



Independence for r.v.s 

Two random variables X and 
Y are independent if  for 
every a,b, the events X=a 
and Y=b are independent 

How about the case of   
X=1st die, Y=2nd die?   



Let’s test our  
Linearity of  Expectation 

chops… 



If  I randomly put 100 letters 
into 100 addressed 
envelopes, on average how 
many letters will end up in 
their correct envelopes? 

Hmm…  

∑k k Pr(exactly k letters end  
up in correct envelopes) 

= ∑k k (…aargh!!…) 
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Indicator Random Variables 

For any event A, can define the 
“indicator random variable” for event A: 

XA(t) =  
1  if  t ∈ A 

0  if  t ∉ A 

E[XA] = 1 × Pr(XA = 1) = Pr(A) 



Use Linearity of  Expectation 

Xi =  
1  if  Ai occurs 

0  otherwise 

Let Ai be the event the ith letter ends up in 
its correct envelope 

Let Xi be the “indicator” R.V. for Ai 

We are asking for E[Z] 

Let Z = X1 + … + X100 

E[Xi] = Pr(Ai) = 1/100 

So E[Z] = 1 



So, in expectation, 1 letter will be 
in the same correct envelope 

Pretty neat: it doesn’t depend on 
how many letters! 

Question: were the Xi independent? 

No! E.g., think of  n=2 



Use Linearity of  Expectation 

General approach: 

View thing you care about as 
expected value of  some RV 

Write this RV as sum of   
simpler RVs 

Solve for their expectations 
and add them up! 



We flip n coins of  bias p. What is 
the expected number of  heads? 

We could do this by summing 

But now we know a better way! 

Example #2 

∑k k Pr(X = k) = ∑k k         pk(1-p)n-k 
n 

k 
= n.p 



Linearity of  Expectation! 

Let X = number of  heads when n 
independent coins of  bias p are flipped 

Break X into n simpler RVs: 

Xi =  
1  if  the ith coin is heads 

0  if  the ith coin is tails 

E[ X ]  = E[ Σi Xi ] =  Σi E[ Xi ] =  Σi p =  np 



On average, in class of  
size m, how many pairs of  
people will have the same 
birthday? 

∑k k Pr(exactly k collisions) 

= ∑k k (…aargh!!!!…) 



Use linearity of  expectation 

Suppose we have m people 
each with a uniformly chosen 
birthday from 1 to 365  

X = number of  pairs of  people 
with the same birthday 

 E[X] = ? 



X = number of  pairs of  people 
with the same birthday 

E[X] = ? 

Use m(m-1)/2 indicator variables, 
one for each pair of  people 

Xjk = 1 if  person j and person k 
have the same birthday; else 0 

E[Xjk]  = (1/365) 1 + (1 – 1/365) 0 

           = 1/365 



X = number of  pairs of  people 
with the same birthday 

Xjk = 1 if  person j and person k 
have the same birthday; else 0 

E[Xjk]  = (1/365) 1 + (1 – 1/365) 0 

           = 1/365 

E[X]  = E[ Σ1 ≤ j < k ≤ m Xjk ] 

= Σ1 ≤ j < k ≤ m E[ Xjk ] 

= m(m-1)/2 × 1/365 



E.g., setting m = 23, we get  

      E[# pairs with same birthday ] 
  = 0.691… 

How does this compare to 
 Pr[ at least one pair has same birthday] ? 


