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independence 

Defn:  Two events E and F are independent if	

P(EF) = P(E) P(F)	


If P(F)>0, this is equivalent to:  P(E|F) = P(E)  (proof below)	


Otherwise, they are called dependent	
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independence 

Roll two dice, yielding values D1 and D2 	


1)	
E = { D1 = 1 } 	

F = { D2 = 1 } 	

P(E) = 1/6,  P(F) = 1/6,  P(EF) = 1/36 	

P(EF) = P(E)•P(F) ⇒ E and F independent	

Intuitive; the two dice are not physically coupled	


2) G = {D1 + D2 = 5} = {(1,4),(2,3),(3,2),(4,1)}	

P(E) = 1/6, P(G) = 4/36 = 1/9, P(EG) = 1/36 	

not independent! 	

E, G are dependent events	

The dice are still not physically coupled, but “D1 + D2 = 5” couples them 
mathematically: info about D1 constrains D2.  (But dependence/
independence not always intuitively obvious; “use the definition, Luke”.)	
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independence 

Two events E and F are independent if	

P(EF) = P(E) P(F)	

If P(F)>0, this is equivalent to:  P(E|F) = P(E)	

Otherwise, they are called dependent	


Three events E, F, G are independent if	

P(EF) 	
= P(E) P(F) ���
P(EG) 	
= P(E) P(G)      and      P(EFG) = P(E) P(F) P(G) ���
P(FG) 	
= P(F) P(G)	


Example:  Let X, Y be each {-1,1} all outcomes equally likely	

E = {X = 1}, F = {Y = 1}, G = { XY = 1}	

P(EF) = P(E)P(F), P(EG) = P(E)P(G), P(FG) = P(F)P(G)	

but P(EFG) = 1/4 !!	
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independence 

In general, events E1, E2, …, En are independent if ���
for every subset S of {1,2,…, n}, we have	


(Sometimes this property holds only for small ���
subsets S.  E.g., E, F, G on the previous slide are ���
pairwise independent, but not fully independent.)	
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independence 

Theorem:  E, F independent ⇒ E, Fc independent	

Proof:     P(EFc) = P(E) – P(EF)	

                  = P(E) – P(E) P(F)	

                  = P(E) (1-P(F))	

                  = P(E) P(Fc)	


Theorem:   P(E)>0, P(F)>0���
   E, F independent ⇔ P(E|F)=P(E) ⇔ P(F|E) = P(F)	

Proof:  Note P(EF) = P(E|F) P(F), regardless of in/dep.	

Assume independent.  Then 	


     P(E)P(F) = P(EF) = P(E|F) P(F) ⇒ P(E|F)=P(E) (÷ by P(F))	


Conversely, P(E|F)=P(E) ⇒  P(E)P(F) = P(EF)       (× by P(F))	


E = EF ∪ EFc	


S	


E                          F       	
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biased coin 

Suppose a biased coin comes up heads with probability p, 
independent of other flips	


 P(n heads in n flips) 	
=  pn���

 P(n tails in n flips) 	
=  (1-p)n���

 P(exactly k heads in n flips)	


Aside: note that the probability of some number of heads =���

as it should, by the binomial theorem.                	
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Suppose a biased coin comes up heads with ���
probability p, independent of other flips	


P(exactly k heads in n flips)	


Note when p=1/2, this is the same result we would have 
gotten by considering n flips in the “equally likely 
outcomes” scenario.  But p≠1/2 makes that inapplicable.  
Instead, the independence assumption allows us to 
conveniently assign a probability to each of the 2n 
outcomes, e.g.:	


Pr(HHTHTTT) = p2(1-p)p(1-p)3 = p#H(1-p)#T	


biased coin 
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Consider the following parallel network	


n routers, ith has probability pi of failing, independently	

P(there is functional path) = 1 – P(all routers fail)	


…
	


p1	


p2	


pn	


network failure 

                          = 1 – p1p2 … pn	




10 

Contrast: a series network	


n routers, ith has probability pi of failing, independently	

P(there is functional path) = 	

       P(no routers fail)	


p1	


p2	


pn	


network failure 

= (1 – p1)(1 – p2) … (1 – pn)	
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deeper into independence 

Recall:  Two events E and F are independent if	

      P(EF) = P(E) P(F)	


If E & F are independent, does that tell us anything about	

      P(EF|G), P(E|G), P(F|G), 	

when G is an arbitrary event?  In particular, is	

      P(EF|G) = P(E|G) P(F|G) ?	


In general, no.	
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deeper into independence 

Roll two 6-sided dice, yielding values D1 and D2	

E = { D1 = 1 }	

F = { D2 = 6 }	

G = { D1 + D2 = 7 }	


E and F are independent	


P(E|G) = 1/6	

P(F|G) = 1/6, but 	

P(EF|G) = 1/6, not 1/36	


so E|G and F|G are not independent!	
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conditional independence 

Definition:	


Two events E and F are called conditionally independent 
given G, if	


P(EF|G) = P(E|G) P(F|G)	

Or, equivalently (assuming P(F)>0, P(G)>0),	


P(E|FG) = P(E|G)	
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Randomly choose a day of the week	

A 	
= { It is not a Monday }	

B 	
= { It is a Saturday }	

C 	
= { It is the weekend }	

A and B are dependent events	

P(A) = 6/7,  P(B) = 1/7,  P(AB) = 1/7.	

Now condition both A and B on C:	

P(A|C) = 1,  P(B|C) = ½,  P(AB|C) = ½	

P(AB|C) = P(A|C) P(B|C) ⇒ A|C and B|C independent	


Dependent events can become independent ���
by conditioning on additional information!	


conditioning can also break DEPENDENCE 

Another reason why 
conditioning is so useful	
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independence: summary 

Events E & F are independent if 	

P(EF) = P(E) P(F), or, equivalently P(E|F) = P(E) (if p(E)>0)	


More than 2 events are indp if, for alI subsets, joint 
probability = product of separate event probabilities	


Independence can greatly simplify calculations	


For fixed G, conditioning on G gives a probability measure, ���
P(E|G)	


But “conditioning” and “independence” are orthogonal:	

Events E & F that are (unconditionally) independent may 
become dependent when conditioned on G	

Events that are (unconditionally) dependent may become 
independent when conditioned on G 	
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