independence

Defn: Two events E and F are independent if
$P(E F)=P(E) P(F)$

If $P(F)>0$, this is equivalent to: $P(E \mid F)=P(E)$ (proof below)

Otherwise, they are called dependent

Roll two dice, yielding values D_{1} and D_{2}
I) $E=\left\{D_{1}=1\right\}$
$F=\left\{D_{2}=I\right\}$
$P(E)=I / 6, P(F)=I / 6, P(E F)=I / 36$
$P(E F)=P(E) \cdot P(F) \Rightarrow E$ and F independent
Intuitive; the two dice are not physically coupled
2) $G=\left\{D_{1}+D_{2}=5\right\}=\{(1,4),(2,3),(3,2),(4, I)\}$
$P(E)=I / 6, P(G)=4 / 36=1 / 9, P(E G)=I / 36$
not independent!
E, G are dependent events
The dice are still not physically coupled, but " $D_{1}+D_{2}=5$ " couples them mathematically: info about D_{1} constrains D_{2}. (But dependence/ independence not always intuitively obvious; "use the definition, Luke".)

Two events E and F are independent if $P(E F)=P(E) P(F)$
If $P(F)>0$, this is equivalent to: $P(E \mid F)=P(E)$
Otherwise, they are called dependent
Three events E, F, G are independent if
$P(E F)=P(E) P(F)$
$P(E G)=P(E) P(G)$ and $P(E F G)=P(E) P(F) P(G)$
$P(F G)=P(F) P(G)$
Example: Let X, Y be each $\{-\mathrm{I}, \mathrm{I}\}$ all outcomes equally likely
$E=\{X=I\}, F=\{Y=I\}, G=\{X Y=I\}$
$P(E F)=P(E) P(F), P(E G)=P(E) P(G), P(F G)=P(F) P(G)$
but $P(E F G)=1 / 4!!$

In general, events $E_{1}, E_{2}, \ldots, E_{n}$ are independent if for every subset S of $\{I, 2, \ldots, n\}$, we have

$$
P\left(\bigcap_{i \in S} E_{i}\right)=\prod_{i \in S} P\left(E_{i}\right)
$$

(Sometimes this property holds only for small subsets S. E.g., E, F, G on the previous slide are pairwise independent, but not fully independent.)

Theorem: E, F independent $\Rightarrow E, F^{c}$ independent
Proof: $\quad P\left(E F^{c}\right)=P(E)-P(E F)$

$$
\begin{aligned}
& =P(E)-P(E) P(F) \\
& =P(E)(I-P(F)) \\
& =P(E) P\left(F^{c}\right)
\end{aligned}
$$

Theorem: $P(E)>0, P(F)>0$
E, F independent $\Leftrightarrow P(E \mid F)=P(E) \Leftrightarrow P(F \mid E)=P(F)$
Proof: Note $P(E F)=P(E \mid F) P(F)$, regardless of in/dep.
Assume independent. Then

$$
P(E) P(F)=P(E F)=P(E \mid F) P(F) \Rightarrow P(E \mid F)=P(E)(\div \text { by } P(F))
$$

Conversely, $P(E \mid F)=P(E) \Rightarrow P(E) P(F)=P(E F) \quad(x$ by $P(F))$

Suppose a biased coin comes up heads with probability p, independent of other flips
$P(n$ heads in n flips $)$

$$
=P^{n}
$$

$P(n$ tails in n flips $)$
$=(1-p)^{n}$
$\mathrm{P}($ exactly k heads in n flips $)=\binom{n}{k} p^{k}(1-p)^{n-k}$

Aside: note that the probability of some number of heads $=\sum_{k}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+(1-p))^{n}=1$ as it should, by the binomial theorem.

Suppose a biased coin comes up heads with probability p, independent of other flips
$\mathrm{P}($ exactly k heads in n flips $)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Note when $p=I / 2$, this is the same result we would have gotten by considering n flips in the "equally likely outcomes" scenario. But $p \neq \mathrm{I} / 2$ makes that inapplicable. Instead, the independence assumption allows us to conveniently assign a probability to each of the 2^{n} outcomes, e.g.:
$\operatorname{Pr}(H H T H T T T)=p^{2}(I-p) p(I-p)^{3}=p^{\# H}(I-p)^{\# T}$

Consider the following parallel network

n routers, $i^{\text {th }}$ has probability P_{i} of failing, independently $P($ there is functional path $)=I-P($ all routers fail $)$

$$
=I-P_{1} P_{2} \cdots P_{n}
$$

Contrast: a series network

n routers, $i^{\text {th }}$ has probability P_{i} of failing, independently $P($ there is functional path $)=$ $P($ no routers fail)

$$
=\left(I-P_{1}\right)\left(I-P_{2}\right) \cdots\left(I-P_{n}\right)
$$

Recall: Two events E and F are independent if $P(E F)=P(E) P(F)$

If E \& F are independent, does that tell us anything about $P(E F \mid G), P(E \mid G), P(F \mid G)$,
when G is an arbitrary event? In particular, is
$P(E F \mid G)=P(E \mid G) P(F \mid G) ?$

In general, no.

Roll two 6-sided dice, yielding values D_{1} and D_{2}
$E=\left\{D_{1}=1\right\}$
$F=\left\{D_{2}=6\right\}$
$G=\left\{D_{1}+D_{2}=7\right\}$
E and F are independent
$P(E \mid G)=1 / 6$
$P(F \mid G)=1 / 6$, but
$P(E F \mid G)=1 / 6$, not $I / 36$
so $\mathrm{E} \mid \mathrm{G}$ and $\mathrm{F} \mid \mathrm{G}$ are not independent!

Definition:
Two events E and F are called conditionally independent given G, if
$P(E F \mid G)=P(E \mid G) P(F \mid G)$
Or, equivalently (assuming $\mathrm{P}(\mathrm{F})>0, \mathrm{P}(\mathrm{G})>0$),
$P(E \mid F G)=P(E \mid G)$

Randomly choose a day of the week
$\mathrm{A}=\{\mathrm{It}$ is not a Monday $\}$
$B=\{I t$ is a Saturday $\}$
$C=\{\mathrm{It}$ is the weekend $\}$
A and B are dependent events
$\mathrm{P}(\mathrm{A})=6 / 7, \mathrm{P}(\mathrm{B})=1 / 7, \mathrm{P}(\mathrm{AB})=1 / 7$.

Now condition both A and B on C :
$P(A \mid C)=1, P(B \mid C)=1 / 2, P(A B \mid C)=1 / 2$
$P(A B \mid C)=P(A \mid C) P(B \mid C) \Rightarrow A \mid C$ and $B \mid C$ independent
Dependent events can become independent by conditioning on additional information! conditioning is so useful

Events E \& F are independent if
$P(E F)=P(E) P(F)$, or, equivalently $P(E \mid F)=P(E)$ (if $p(E)>0)$
More than 2 events are indp if, for all subsets, joint probability $=$ product of separate event probabilities Independence can greatly simplify calculations
For fixed G, conditioning on G gives a probability measure, P(E|G)
But "conditioning" and "independence" are orthogonal:
Events E \& F that are (unconditionally) independent may become dependent when conditioned on G
Events that are (unconditionally) dependent may become independent when conditioned on G

