## In preparation for final

- Solutions to homeworks $7 / 8$ will be posted today
- Sample final will be posted by tomorrow morning.
- I will have office hours Monday morning 8:30
-10:30am.

Coverage-comprehensive, slight emphasis post-midterm pre-mid: B\&T ch I-2 post-mid: B\&T ch 3, 4.3, 5, 9.I, continuous, limits, mle.
everything in slides, hw
Mechanics
closed book, aside from one page of notes ( $8.5 \times \mathrm{II}$, both sides, handwritten)
I'm much more interested in setup and method than in numerical answers, so concentrate on giving a clear approach, perhaps including a terse english outline of your reasoning.
Corollary: calculators are probably irrelevant, but bring one to the exam if you want, just in case.
Format-similar to midterm:
T/F, multiple choice, problem-solving, explain, ...
Story problems
counting principle (product rule)
permutations
combinations
indistinguishable objects
binomial coefficients
binomial theorem
partitions \& multinomial coefficients
inclusion/exclusion
pigeon hole principle
sample spaces \& events
axioms
complements, Venn diagrams, deMorgan, mutually exclusive events, etc.
equally likely outcomes

## chapter 1: conditional probability and independence

conditional probability
chain rule, aka multiplication rule
total probability theorem
Bayes rule yes, learn the formula
independence
conditional independence
gambler's ruin
discrete random variables
probability mass function (pmf)
expectation of $X$
expectation of $g(X)$ (i.e., a function of an r.v.)
linearity: expectation of $X+Y$ and $a X+b$
variance
cumulative distribution function (cdf)
cdf as sum of pmf from $-\infty$
independence; joint and marginal distributions
important examples: know pmf, mean, variance of these
bernoulli, binomial, poisson, geometric, uniform

## some important (discrete) distributions

| Name | PMF | $E[k]$ | $E\left[k^{2}\right]$ | $\sigma^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| Uniform( $a, b$ ) | $f(k)=\frac{1}{(b-a+1)}, k=a, a+1, \ldots, b$ | $\frac{a+b}{2}$ |  | $\frac{(6-a+1)^{2}-1}{12}$ |
| Bernoulli(p) | $f(k)= \begin{cases}1-p & \text { if } k=0 \\ p & \text { if } k=1\end{cases}$ | $p$ | $p$ | $p(1-p)$ |
| $\operatorname{Binomial}(p, n)$ | $f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n$ | $n p$ |  | $n p(1-p)$ |
| Poisson( $\lambda$ ) | $f(k)=e^{-\lambda \frac{\lambda^{k}}{k!}}, k=0,1, \ldots$ | $\lambda$ | $\lambda(\lambda+1)$ | $\lambda$ |
| Geometric(p) | $f(k)=p(1-p)^{k-1}, k=1,2, \ldots$ | $\frac{1}{p}$ | $\frac{2-p}{p^{2}}$ | $\frac{1-p}{p^{2}}$ |
| Hypergeomet$\operatorname{ric}(n, N, m)$ | $f(k)=\frac{\binom{m}{k}\binom{N-m}{n}}{\binom{N}{n}}, k=0,1, \ldots, N$ | $\frac{n m}{N}$ |  | $\frac{n m}{N}\left(\frac{(n-1)(m-1)}{N-1}+1-\frac{n m}{N}\right)$ |

See also the summary in B\&T following pg 528

## chapter 3: continuous random variables

especially 3.1-3.5
probability density function (pdf)
cdf as integral of pdf from $-\infty$
expectation and variance
Law of total probability, law of total expectation
Conditional expectation
Recall, in general, $\mathrm{E}[f(\mathrm{X})] \neq \mathrm{f}(\mathrm{E}[\mathrm{X}])$.
important examples
uniform, normal (incl $\Phi$, "standardization"), exponential
know pdf and/or cdf, mean, variance of these
tail bounds
Markov
Chebyshev
Chernoff (lightly)
limit theorems
law of large numbers
central limit theorem

## likelihood, parameter estimation, MLE (b\&t 9.1)

## likelihood

"likelihood" of observed data given a model usually just a product of probabilities (or densities: "lim $\square_{\square} \rightarrow 0 . .$. "), by independence assumption
a function of (unknown?) parameters of the model
parameter estimation
if you know/assume the form of the model (e.g. normal, poisson,...), can you estimate the parameters based on observed data many ways
maximum likelihood estimators
one way to do it-choose values of the parameters that maximize likelihood of observed data
method (usually) - solve
"derivative (wrt parameter/s) of (log) likelihood $=0$ "

## expectation maximization (EM)

## EM

iterative algorithm trying to find MLE in situations that are analytically intractable
usual framework: there are 0/1 hidden variables (e.g., from which component was this datum sampled) \& problem much easier if they were known

E-step: given rough parameter estimates, find expected values of hidden variables
M-step: given expected values of hidden variables, find (updated) parameter estimates to maximize likelihood
Algorithm: iterate above alternately until convergence

Noise, uncertainty \& variability are pervasive
Learning to model it, derive knowledge, and compute despite it are critical
E.g., knowing the mean is valuable, but two scenarios with the same mean and different variances can behave very differently in practice.

Stat 390/1 probability \& statistics CSE 421 algorithms
CSE 427/8 computational biology
CSE 440/1 human/computer interaction
CSE 446 machine learning
CSE 472 computational linguistics
CSE 473 artificial intelligence
and others!

## Thanks and Good Luck!

