Conditional Probability

General defn: $P(E \mid F)=\frac{P(E F)}{P(F)}$ where $\mathrm{P}(\mathrm{F})>0$

Implies: $P(E F)=P(E \mid F) P(F) \quad$ ("the chain rule")

General definition of Chain Rule:

$$
\begin{aligned}
& P\left(E_{1} E_{2} \cdots E_{n}\right)= \\
& \quad P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1}, E_{2}\right) \cdots P\left(E_{n} \mid E_{1}, E_{2}, \ldots, E_{n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
P(E) & =P(E F)+P\left(E F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right)(I-P(F))
\end{aligned}
$$

More generally, if $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{n}}$ partition S (mutually exclusive, $\left.U_{i} F_{i}=S, P\left(F_{i}\right)>0\right)$, then
$P(E)=\sum_{i} P\left(E \mid F_{i}\right) P\left(F_{i}\right)$
weighted average,
F_{i} happening or not.
(Analogous to reasoning by cases; both are very handy.)

Gambler's ruin
BT pg. 63
A gambler makes a series of independent bets. In each bet, he wins $\$ 1$ with probability $1 / 2$ and loses $\$ 1$ with probability

$1 / 2$. He starts with $\$ k$.
What is the probability he makes $\$ \mathrm{~N}$ before he goes broke?
nice example of the utility of conditioning: future decomposed into two crisp cases instead of being a blurred superposition thereof

$$
\begin{aligned}
p_{i} & =P\left(E_{i}\right)=P\left(E_{i} \mid H\right) P(H)+P\left(E_{i} \mid T\right) P(T) \\
p_{i} & =\frac{1}{2}\left(p_{i+1}+p_{i-1}\right) \\
2 p_{i} & =p_{i+1}+p_{i-1} \\
p_{i+1}-p_{i} & =p_{i}-p_{i-1} \\
p_{2}-p_{1} & =p_{1}-p_{0}=p_{1}, \text { since } p_{0}=0
\end{aligned} \quad\left\{\begin{aligned}
\text { So: } p_{2} & =2 p_{1} \\
& \cdots \\
p_{i} & =i p_{1} \\
p_{N} & =N p_{1}=1 \\
p_{i} & =i / N
\end{aligned}\right.
$$

Most common form:

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Expanded form (using law of total probability):

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)}
$$

Why it's important:
Reverse conditioning
$\mathrm{P}($ model \mid data $) \sim P($ data | model $)$
Combine new evidence (E) with prior belief $(P(F))$
Posterior vs prior

HIV testing

	HIV +	HIV-
Test +	$0.98=P(E \mid F)$	$0.01=P\left(E \mid F^{c}\right)$
Test -	$0.02=P\left(E^{c} \mid F\right)$	$0.99=P\left(E^{c} \mid F^{c}\right)$

0.5\% of population has HIV

Let $\mathrm{E}=$ you test positive for HIV
Let $F=$ you actually have HIV
What is $\mathrm{P}(\mathrm{F} \mid \mathrm{E})$?

$$
\begin{aligned}
P(F \mid E) & =\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)} \\
& =\frac{(0.98)(0.005)}{(0.98)(0.005)+(0.01)(1-0.005)} \\
& \approx 0.330 \quad \mathrm{P}(\mathrm{E}) \approx 1.5 \%
\end{aligned}
$$

why testing is still good

	HIV +	HIV-
Test +	$0.98=P(E \mid F)$	$0.01=P\left(E \mid F^{c}\right)$
Test -	$0.02=P\left(E^{c} \mid F\right)$	$0.99=P\left(E^{c} \mid F^{c}\right)$

Let $\mathrm{E}^{\mathrm{C}}=$ you test negative for HIV
Let $F=$ you actually have HIV
What is $\mathrm{P}\left(\mathrm{F} \mid \mathrm{E}^{\mathrm{C}}\right)$?

$$
\begin{aligned}
P\left(F \mid E^{c}\right) & =\frac{P\left(E^{c} \mid F\right) P(F)}{P\left(E^{c} \mid F\right) P(F)+P\left(E^{c} \mid F^{c}\right) P\left(F^{c}\right)} \\
& =\frac{(0.02)(0.005)}{(0.02)(0.005)+(0.99)(1-0.005)} \\
& \approx 0.0001
\end{aligned}
$$

