Conditional Expectation

Expected value of random variable X given event A

$$
E(X \mid A)=\sum_{x \in \operatorname{Range}(X)} x \operatorname{Pr}(X=x \mid A)
$$

Law of Total Expectation (example)

49.8\% of population male

Average height 5'II" (men) 5'5" (female)

$$
\begin{aligned}
E(H) & =E(H \mid M) \operatorname{Pr}(M)+E(H \mid F) \operatorname{Pr}(F) \\
& =5 \frac{11}{12} \cdot 0.498+5 \frac{5}{12} \cdot 0.502
\end{aligned}
$$

Law of Total Expectation

X random variable on a sample space S
$A_{1}, A_{2}, \ldots, A_{k} \quad$ partition of S

$$
\begin{aligned}
E(X) & =\sum_{i} E\left(X \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right) \\
& =\sum_{i} \sum_{x} x \operatorname{Pr}\left(X=x \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right) \\
& =\sum_{x} \sum_{i} x \operatorname{Pr}\left(X=x \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right) \\
& =\sum_{x} x \sum_{i} \operatorname{Pr}\left(X=x \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right) \\
& =\sum_{i} x \operatorname{Pr}(X=x)
\end{aligned}
$$

Law of Total Expectation : Application

System that fails in step i independently with probability p X \# steps to fail

$E(X)$?

Let A be the event that system fails in first step.

$$
\begin{aligned}
E(X) & =E(X \mid A) \operatorname{Pr}(A)+E(X \mid \bar{A}) \operatorname{Pr}(\bar{A}) \\
& =p+(1+E(X))(1-p) \\
& =1+(1-p) E(X) \\
E(X) & =\frac{1}{p}
\end{aligned}
$$

Law of Total Expectation : Example

A miner is trapped in a mine containing 3 doors.

- The $I^{\text {st }}$ door leads to a tunnel that will take him to safety after 3 hours.
- The $2^{\text {nd }}$ door leads to a tunnel that returns him to the mine after 5 hours.
- The $3^{\text {rd }}$ door leads to a tunnel that returns him to the mine after 7 hours.

At all times, he is equally likely to choose any one of the doors.

E(time to reach safety) ?

Algorithms and randomized algorithms

- Binary search: Given a sorted array of n numbers, determine if the array contains the number 153.
- Given an array of unsorted numbers, sort them.
- Given an array of 0's and I's, either $1 / 2$ of each, or all I's. Determine which.

Worst case running time: measure of work algorithm does

Given array of length n

If $\mathrm{n}=0$ or I , halt
Otherwise, pick element p of array as "pivot"
Split array into subarrays: < p, $=p,>p$
Recursively sort subarray < p
Recursively sort subarray > p

Worst case number of comparisons?

What if we use a random pivot?

That makes it a randomized algorithm!

