Section 5-23

- Review of important distributions
- Another randomized algorithm

Discrete Random Variables

Bernoulli Distribution

Definition: value 1 with probability $p, 0$ otherwise (prob. $q=1-p$)
Example: coin toss ($p=1 / 2$ for fair coin)
Parameters: p
Properties:
$\mathrm{E}[\mathrm{X}]=p$
$\operatorname{Var}[\mathrm{X}]=p(1-p)=p q$

Binomial Distribution

Definition: sum of n independent Bernoulli trials, each with parameter p

Example: number of heads in 10 independent coin tosses
Parameters: n, p
Properties:
$\mathrm{E}[\mathrm{X}]=n p$
$\operatorname{Var}(\mathrm{X})=n p(1-p)$
pmf: $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}{ }_{8}$

Poisson Distribution

Definition: number of events that occur in a unit of time, if those events occur independently at an average rate λ per unit time

Example: \# of cars at traffic light in 1 minute, \# of deaths in 1 year by horse kick in Prussian cavalry

Parameters: λ

Properties:

$\mathrm{E}[\mathrm{X}]=\lambda$
$\operatorname{Var}[\mathrm{X}]=\lambda$
pmf: $\quad \operatorname{Pr}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}$

Geometric Distribution

Definition: number of independent Bernoulli trials with parameter p until and including first success (so X can take values $1,2,3, \ldots$)

Example: \# of coins flipped until first head
Parameters: p
Properties:
$\mathrm{E}[\mathrm{X}]=\frac{1}{p}$
$\operatorname{Var}[\mathrm{X}]=\frac{1-p}{p^{2}}$
pmf: $\quad \operatorname{Pr}(X=k)=(1-p)^{k-1} p$

Hypergeometric Distribution

Definition: number of successes in n draws (without replacement) from N items that contain K successes in total

Example: An urn has 10 red balls and 10 blue balls. What is the probability of drawing 2 red balls in 4 draws?

Parameters: n, N, K

Properties:

$\mathrm{E}[\mathrm{X}]=n \frac{K}{N}$
$\operatorname{Var}[\mathrm{X}]=n \frac{K}{N} \frac{N-K}{N} \frac{N-n}{N-1}$
Think about the pmf; we've been doing it for weeks
pmf: $\quad \operatorname{Pr}(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$ now: ways-to-choose-successes times ways-to-choose-failures over ways-to-choose-n

Also, consider that the binomial dist. is the withreplacement analog of this

Continuous Random Variables

Uniform Distribution

Definition: A random variable that takes any real value in an interval with equal likelihood

Example: Choose a real number (with infinite precision) between 0 and 10

Parameters: a, b (lower and upper bound of interval)
Properties:
$\mathrm{E}[\mathrm{X}]=\frac{a+b}{2}$
$\operatorname{Var}[\mathrm{X}]=\frac{(b-a)^{2}}{12}$
pdf: $f(x)=\frac{1}{b-a}$ if $x \in[a, b], 0$ otherwise

Exponential Distribution

Definition: Time until next events in Poisson process
Example: How long until the next soldier is killed by horse kick?
Parameters: λ, the rate at which Poisson events occur
Properties:

$$
\begin{aligned}
& \mathrm{E}[\mathrm{X}]=\frac{1}{\lambda} \\
& \operatorname{Var}[\mathrm{X}]=\frac{1}{\lambda^{2}} \\
& \text { pdf: } f(x)=\lambda e^{-\lambda x} \text { for } x \geq 0, \quad 0 \text { for } x<0
\end{aligned}
$$

Normal Distribution

Definition: Your classic bell curve
Example: Quantum harmonic oscillator ground state (exact)
Human heights, binomial random variables (approx)
Properties: μ, σ^{2} (yes, mean and variance are given)
$\mathrm{E}[\mathrm{X}]=\mu$
$\operatorname{Var}[\mathrm{X}]=\sigma^{2}$
pdf: $f(x)=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$

Another Randomized Algorithm

Matrix Multiplication

Multiplying $n \times n$ matrices ($n=2$ in this example)

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] *\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{ll}
a w+b y & a x+b z \\
c w+d y & c x+d z
\end{array}\right]
$$

Complexity of straightforward algorithm: $\mathbf{O}\left(n^{3}\right)$ time
(There are 8 multiplications here; in general, n multiplications for each of n^{2} entries)
Coppersmith-Winograd algorithm (with help by others) can perform this operation in time $\mathrm{O}\left(\mathrm{n}^{2.38}\right)$
(2.3755 in 1990, 2.3727 by 2011. Progress!)

Frievalds' Algorithm

- Determine whether $n \times n$ matrices A, B and C satisfy the condition $A B=C$
- Method:
- Choose $x \in\{0,1\}^{n}$ randomly and uniformly (vector of length n)
- If $A B x \neq C x$, then $A B \neq C$
- Else, $A B=C$ probably

Results of Frievalds’ Algorithm

- Runs in time $\mathrm{O}\left(n^{2}\right)$
- $A B x=A(B x)$, so we have 3 instances of an $n \times n$ matrix times an n-vector
- these are $\mathrm{O}\left(n^{2}\right)$ time operations
- Via some math magic,
$\mathrm{P}($ the algorithm reports $A B=C \mid A B \neq C) \leq 1 / 2$
- By iterating k random choices of x, can decrease probability of error to $1 / 2^{k}$.
- Interesting comparison
- Quicksort is always correct, runs slowly with small probability
- Frievalds' alg. is always fast, incorrect with small probability

