Section 5-23

- . Review of important distributions
- Another randomized algorithm

Discrete Random Variables

Bernoulli Distribution

Definition: value 1 with probability p, 0 otherwise (prob. q = 1-p) **Example:** coin toss ($p = \frac{1}{2}$ for fair coin) **Parameters:** p **Properties:** E[X] = pVar[X] = p(1-p) = pq

Binomial Distribution

Definition: sum of *n* independent Bernoulli trials, each with parameter *p*

Example: number of heads in 10 independent coin tosses

Parameters: *n*, *p*

Poisson Distribution

Definition: number of events that occur in a unit of time, if those events occur independently at an average rate λ per unit time

Example: # of cars at traffic light in 1 minute, # of deaths in 1 year by horse kick in Prussian cavalry

Parameters: λ

Properties:

 $E[X] = \lambda$ Var[X] = λ pmf: $Pr(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}$

Geometric Distribution

Definition: number of independent Bernoulli trials with parameter *p* until and including first success (so *X* can take values 1, 2, 3, ...)

Example: # of coins flipped until first head

Parameters: *p* 1.0 p = 0.2**Properties:** p = 0.50.8 8.0 = q $E[X] = \frac{1}{p}$ $Var[X] = \frac{1-p}{p^2}$ (x 0.6 = X) d 0.4 0.2 pmf: $Pr(X = k) = (1 - p)^{k-1}p$ 0.0 2 0 4 6 8

10

х

Hypergeometric Distribution

Definition: number of successes in *n* draws (without replacement) from *N* items that contain *K* successes in total

Example: An urn has 10 red balls and 10 blue balls. What is the probability of drawing 2 red balls in 4 draws?

Parameters: n, N, K

Properties:

 $E[X] = n\frac{K}{N}$ $Var[X] = n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$ $pmf: Pr(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$

Think about the pmf; we've been doing it for weeks now: ways-to-choose-successes times ways-tochoose-failures over ways-to-choose-n

Also, consider that the binomial dist. is the with-replacement analog of this

Continuous Random Variables

Uniform Distribution

Definition: A random variable that takes any real value in an interval with equal likelihood

Example: Choose a real number (with infinite precision) between 0 and 10

Parameters: *a*, *b* (lower and upper bound of interval)

Properties:

 $E[X] = \frac{a+b}{2}$ $Var[X] = \frac{(b-a)^2}{12}$ $pdf: f(x) = \frac{1}{b-a} \text{ if } x \in [a,b], 0 \text{ otherwise}$

Exponential Distribution

Definition: Time until next events in Poisson process **Example:** How long until the next soldier is killed by horse kick? **Parameters:** λ , the rate at which Poisson events occur **Properties:**

Normal Distribution

Definition: Your classic bell curve

Example: Quantum harmonic oscillator ground state (exact) Human heights, binomial random variables (approx)

Properties: μ , σ^2 (yes, mean and variance are given)

Another Randomized Algorithm

Matrix Multiplication

Multiplying $n \times n$ matrices (n = 2 in this example)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} * \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{bmatrix}$$

Complexity of straightforward algorithm: $O(n^3)$ time

(There are 8 multiplications here; in general, n multiplications for each of n^2 entries)

Coppersmith–Winograd algorithm (with help by others) can perform this operation in time $O(n^{2.38})$

(2.3755 in 1990, 2.3727 by 2011. Progress!)

Frievalds' Algorithm

- Determine whether $n \times n$ matrices A, B and C satisfy the condition AB = C
- Method:
 - Choose $x \in \{0,1\}^n$ randomly and uniformly (vector of length n)
 - If $ABx \neq Cx$, then $AB \neq C$
 - Else, AB = C probably

Results of Frievalds' Algorithm

- Runs in time $O(n^2)$
 - ABx = A(Bx), so we have 3 instances of an $n \times n$ matrix times an *n*-vector
 - these are $O(n^2)$ time operations
- Via some math magic,

P(the algorithm reports $AB = C | AB \neq C \le \frac{1}{2}$

- By iterating k random choices of x, can decrease probability of error to $1/2^k$.
- Interesting comparison
 - Quicksort is always correct, runs slowly with small probability
 - Frievalds' alg. is always fast, incorrect with small probability