
Midterm Review 

CSE 312 



Counting 

•  Product Rule: If there are n outcomes for 
some event A, sequentially followed by m 
outcomes for event B, then there are n•m 
outcomes overall. General: n1×n2×...×nk  

•  Permutation: an arrangement of objects in a 
definite order N!/(N-n)! 

•  Combination: a selection of objects with no 
regard to order N!/[n!(N-n)!] 



Binomial Theorem 



Inclusion-Exclusion 

•  for two sets or events A and B, whether or not 
they are disjoint, |A∪B| = |A| + |B| - |A∩B| 

•  General: |A∪B∪C| =  |A| + |B| + |C| - |B∩C| - |
A∩C| - |A∩B| + |A∩B∩C| 



Pigeonhole Principle	  

•  If there are n pigeons in k holes and n > k, then 
some hole contains more than one pigeon. 
More precisely, some hole contains at least   
⎡n/k⎤ pigeons. 

•  Problem: network problem on HW 



Sample spaces / Events / Sets 
•  Sample space: S is the set of all possible outcomes of an 

experiment (notation: Ω) 
•  Events: E ⊆ S is an arbitrary subset of the sample space   
•  Set:  

 subset: A⊂B 
 Union: A∪B={x | x∈A or x∈B} 
 Intersection: A∩B={x∈A  and x∈B} 
 Complement: A'={x | x∉A}=A^c 
 Mutually Exclusive / Disjoint: A∩B=∅ 
 Any number of sets A1,A2,A3,...are mutually exclusive  
 if and only if Ai∩Aj=∅ for i≠j 



DeMorgan’s Laws   
 	  



Axioms of Probability  
 

•  Axiom 1 (Non-negativity): 0 ≤ Pr(E)  
•  Axiom 2 (Normalization): Pr(S) = 1   
•  Axiom 3 (Additivity): If E and F are mutually 

exclusive (EF = ∅), then Pr(E ∪ F) = Pr(E) + 
Pr(F)  
 If events E1, E2, …En are mutually exclusive 



Conditional Probability 

•  Conditional probability of E given F: 
probability that E occurs given that F has 
occurred. P(E|F) 



Chain Rule 

•                                           where, P(F) > 0 

•  General definition of Chain Rule: 



Law of Total Probability 

•  E and F are events in the sample space S:  
E = EF U EF’ 
 
P(E) = P(EF) + P(EFc) 
= P(E|F) P(F) + P(E|Fc) P(Fc) 
= P(E|F) P(F) + P(E|Fc) (1-P(F)) 
 
P(E) = ∑i P(E|Fi) P(Fi) 



Bayes Theorem 



Independence 
•  Two events E and F are independent if  
P(EF) = P(E)P(F). If P(F) > 0, P(E|F) = P(E) 
Otherwise, they are dependent. 
•  Three events E, F, G are independent if 
P(EF) = P(E)P(F) P(EG) = P(E)P(G) P(FG) = 
P(G)P(G) and P(EFG) = P(E)P(F)P(G) 
•  Events E1, E2, …, En are independent if for 

every subset S of {1,2,…, n}, we have 



Independence 

•  Theorem:	  E,	  F	  independent	  ⇒	  E,	  F’	  
independent	  

•  Theorem:	  if	  P(E)>0,	  P(F)>0,	  then	  	  
E,	  F	  independent	  ⇔	  P(E|F)=P(E)	  ⇔	  P(F|E)	  =	  P(F)	  



Network Failure 

•  Parallel: n routers in parallel, ith has 
probability pi of failing, independently 

P(there is functional path) = 1 – P(all routers fail) 
= 1 – p1p2 … pn 
•  Series: n routers, ith has probability pi of 

failing, independently  
P(there is functional path) =  P(no routers fail) = 
(1 – p1)(1 – p2) … (1 – pn) 



Conditional Independence 

•  Two events E and F are called conditionally 
independent given G, if  

•  P(EF|G) = P(E|G) P(F|G) 

•  Or, P(E|FG) = P(E|G), (P(F)>0, P(G)>0) 



PMF / CDF 

•  PMF: probability mass function 

•  CDF: cumulative  
distribution function: 



Expectation 

•  For	  a	  discrete	  r.v.	  X	  with	  p.m.f.	  p(•),	  the	  
expectaCon	  of	  X	  (expected	  value	  or	  mean),	  is	  	  	  
E[X]	  =	  Σx	  xp(x)	  



Properties of Expectation 

•  Linearity:  
•  For any constants a, b: E[aX + b] = aE[X] + b 

•  Let X and Y be two random variables derived 
from outcomes of a single experiment. Then 
E[X+Y] = E[X] + E[Y] 



Variance	  

•  The	  variance	  of	  a	  random	  variable	  X	  with	  
mean	  E[X]	  =	  μ	  is	  Var[X]	  =	  E[(X-‐μ)^2],	  oOen	  
denoted	  σ^2.	  



Properties of Variance 

•  1.	  

•  2.	  Var[aX+b]	  =	  a^2	  *	  Var[X]	  

•  3.	  Var[X+Y]	  ≠	  Var[X]	  +	  Var[Y]	  



r.v.s Independence 

•  Defn: Random variable X and event E are 
independent if the event E is independent of the 
event {X=x} (for any fixed x), i.e.∀x P({X = x} 
& E) = P({X=x}) • P(E) 

•  Defn: Two random variables X and Y are 
independent if the events {X=x} and {Y=y} are 
independent (for any fixed x, y), i.e. 

∀x, y P({X = x} & {Y=y}) = P({X=x}) • P({Y=y}) 



Joint Distributions 

•  Joint probability mass function: 
fXY(x, y) = P({X = x} & {Y = y}) 

•  Joint cumulative distribution function: 
FXY(x, y) = P({X ≤ x} & {Y ≤ y}) 



Marginal Distributions 

•  Marginal PMF of one r.v.: sum over the other 
 
•  fY(y) = Σx fXY(x,y)  
•  fX(x) = Σy fXY(x,y) 



Discrete Random Variables 



Bernoulli Distribution 
Definition: value 1 with probability p, 0 otherwise (prob. q = 1-

p) 

Example: coin toss (p = ½ for fair coin) 

Parameters: p  

Properties: 

E[X] = p 

Var[X] = p(1-p) = pq 

 



Binomial Distribution 
Definition: sum of n independent Bernoulli trials, each with 

parameter p 

Example: number of heads in 10 independent coin tosses 

Parameters: n, p 

Properties: 



Poisson Distribution 
Definition: number of events that occur in a unit of time, if 

those events occur independently at an average rate λ per 
unit time 

Example: # of cars at traffic light in 1 minute, # of deaths in 1 
year by horse kick in Prussian cavalry 

Parameters: λ 

Properties: 

 



Geometric Distribution 
Definition: number of independent Bernoulli trials with 

parameter p until and including first success (so X can take 
values 1, 2, 3, ...) 

Example: # of coins flipped until first head 

Parameters: p 

Properties: 



Hypergeometric Distribution 
Definition: number of successes in n draws (without                                                               

replacement) from N items that contain K successes in total 

Example: An urn has 10 red balls and 10 blue balls.  What is 
the probability of drawing 2 red balls in 4 draws? 

Parameters: n, N, K 

Properties: 

 

Think about the pmf; we've been doing it for 
weeks now:  ways-to-choose-successes times 
ways-to-choose-failures over ways-to-choose-n 
 
Also, consider that the binomial dist. is the with-
replacement analog of this 


