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competing hypotheses

Does smoking cause lung cancer?	



(a)  No; we don’t know what causes cancer, but 
smokers are no more likely to get it than non-
smokers	



(b)  Yes; a much greater % of smokers get it	



!

Notes: (1) even in case (b), “cause” is a stretch, but for 
simplicity, “causes” and “correlates with” will be 
loosely interchangeable today.  (2) we really don’t 
know, in mechanistic detail, what causes lung cancer, 
nor how smoking contributes, but the statistical 
evidence strongly points to smoking as a key factor.

���2



competing hypotheses
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Programmers using the Eclipse IDE make fewer errors	



(a)  Hooey.  Errors happen, IDE or not.	



(b)  Yes.  On average, programmers using Eclipse 
produce code with fewer errors per thousand 
lines of code	



!



competing hypotheses
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Black Tie Linux has way better web-server throughput  
than Red Shirt.	



(a)  Ha!  Linux is linux, throughput will be the same	



(b)  Yes.  On average, Black Tie response time is 20% 
faster.	



!



competing hypotheses
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This coin is biased!	



(a)  “Don’t be paranoid, dude.  It’s a fair coin, like any 
other, P(Heads) = 1/2” 	



(b)  “Wake up, smell coffee: P(Heads) = 2/3, totally!”	



!



competing hypotheses

How do we decide?	



Design an experiment, gather data, evaluate:	



In a sample of N smokers + non-smokers, does % 
with cancer differ?  Age at onset?  Severity?	



In N programs, some written using IDE, some not, do 
error rates differ?	



Measure response times to N individual web 
transactions on both.	



In N flips, does putatively biased coin show an unusual 
excess of heads?  More runs?  Longer runs?	



A complex, multi-faceted problem. Here, emphasize evaluation: 	



What N?  How large of a difference is convincing?
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hypothesis testing
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By convention, the null hypothesis is usually the “simpler” hypothesis, or “prevailing 
wisdom.”  E.g., Occam’s Razor says you should prefer that, unless there is strong 
evidence to the contrary.

Example:	



100 coin flips	



P(H) = 1/2	



P(H) = 2/3	



“if #H ≤ 60, accept 
null, else reject null”	



P(H ≤ 60 | 1/2) = ?
P(H  >  60 | 2/3) = ?

General framework:	



1. Data	



2. H0 – the “null hypothesis”	



3. H1 – the “alternate hypothesis”	



4. A decision rule for choosing 
between H0/H1 based on data	



5. Analysis:  What is the probability 
that we get the right answer?



error types
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H0 True H1 True

observed fract of heads→

de
ns

ity

Type I error: false reject; 	


reject H0 when it is true.  	



Type II error: false accept; 	


accept H0 when it is false.  	



Goal: make both small (but it’s a  
tradeoff; they are interdependent).  
Type I ≤ 0.05 common in scientific 
literature.  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decision 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Type I

Type II

rejection region



decision rules
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Is coin fair (1/2) or biased (2/3)?  How to decide?  
Ideas:	



!

1. Count: 	

Flip 100 times; if number of heads observed 
is ≤ 60, accept H0  
or ≤ 59, or  ≤ 61 ... ⇒ different error rates	



2. Runs: 	

 Flip 100 times.  Did I see a longer run of 
heads or of tails?	



3. Runs:	

 Flip until I see either 10 heads in a row 
(reject H0) or 10 tails is a row (accept H0)	



4. Almost-Runs:  As above, but 9 of 10 in a row 	



5.  . . .
Limited only by your ingenuity and ability to analyze.  

But how will you optimize Type I,II errors?



likelihood ratio tests

A generic decision rule:  a “Likelihood Ratio Test”	



!

!

!

E.g.:	



c = 1: accept H0 if observed data is more likely 
under that hypothesis than it is under the 
alternate, but reject H0 if observed data is 
more likely under the alternate	



c = 5: accept H0 unless there is strong evidence 
that the alternate is more likely (i.e., 5 x)	



Changing c shifts balance of Type I vs II errors, of course
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example

H0: P(H) = 1/2	

 	

 Data: flip 100 times	



H1: P(H) =  2/3	

	

 Decision rule:  Accept H0 if #H ≤ 60	



P(Type I)  = P(#H > 60 | H0) ≈ 0.018	



P(Type II) = P(#H ≤ 60 | H1) ≈ 0.097
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“R” pmf/pdf functions

;                              ;



example (cont.)
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some notes

Log of likelihood ratio is equivalent, often more 
convenient	



add logs instead of multiplying…	



“Likelihood Ratio Tests”: reject null if LLR > threshold	



LLR > 0 disfavors null, but higher threshold gives 
stronger evidence against 	



Neyman-Pearson Theorem: For a given error rate, LRT 
is as good a test as any (subject to some fine print).
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summary

Null/Alternative hypotheses - specify distributions from which data 
are assumed to have been sampled	



Decision rule; “accept/reject null if sample data...”; many possible	



Type 1 error: false reject/reject null when it is true	



Type 2 error: false accept/accept null when it is false	


Balance P(type 1 error) vs  P(type 2 error) based on “cost” of each	



Likelihood ratio tests: for simple null vs simple alt, compare ratio of 
likelihoods under the 2 competing models to a fixed threshold.	



Neyman-Pearson: LRT is best possible in this scenario.
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summary

Prob/stats we’ve looked at is actually 
useful, giving you tools to understand 
contemporary research in CSE (and 

elsewhere).	


!

I hope you enjoyed it!
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And One Last Bit of  Probability Theory
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See also:	


    http://mathforum.org/library/drmath/view/55871.html  
    http://en.wikipedia.org/wiki/Infinite_monkey_theorem


