CSE 312, Autumn 2013, W.L.Ruzzo

8. Average-Case Analysis of Algorithms
+ Randomized Algorithms



insertion sort

Array A[1] ... A[n]
fori=2...n-1{
T = A[i]

j = i-| “compare”
while j >= 0 &&{
wr{ A=A
ALl =T
j=j-

or

Sorted

Unsorted




insertion sort

Run Time
Worst Case: O(n?)
( ~n? swaps; #compares = #swaps + n - |)
“Average Case”
! What'’s an “average” input?

One idea (and about the only one that is
analytically tractable): assume all n! permutations

of input are equally likely.



permutations & inversions

A permutation 1Tt = (1, M2, ..., ) of |,.., n is simply a list
of the numbers between | and n, in some order.
(i,j) is an inversion in 7t if i <j but 1 > m; G. Cramer, 1750
E.g., (1,5)
(4,5
n=(35142)

&

has six inversions: (1,3), (1,5), (2,3), (2,4), (2,5),and (4,5)
Min possible: O: n=(12345)
Max possible: n choose 2: n=(54321)

Obviously, the goal of sorting is to remove inversions




inversions & insertion sort

Swapping an adjacent pair of positions that are out-of-
order decreases the number of inversions by exactly |.

So..., number of swaps performed by insertion sort is
exactly the number of inversions present in the input.
Counting them:

a. worst case: h choose 2
b. average case:

o 1 if (¢,7) is an inversion
) 0 if not s
ob;
e'&o@
/\*\"‘&&"é
I=> 1, <



counting inversions

There is a |-1 correspondence between permutations
having inversion (i,j) versus not: |
? J
T (- a b )
o (- b a )

So:

1<J 1<)
Thus, the expected number of swaps in insertion sort
. N
is (7)/2 versus (7) in worst-case. l.e,

The average run time of insertion sort (assuming
random input) is about half the worst case time.




average-case analysis of quicksort

Quicksort also does swaps, but nonadjacent ones.

Recall method:
Array A[l..n]
|. “pivot” = A[l]
2. “Partition” ( O(n) compares/swaps ) so that:
{A[I], ... A[i-17} < {A[i] == pivot} < {A[i+1], ..., A[n]}
3. recursively sort {A[ 1], ..., A[i-1]} & {A[i+1], ...,A[n]}



quicksort run-time

Worst case: already sorted (among others) —
T(n)=n+T(n-1)=
=n+(n-1)+(n-2)+.. + 1 =n(ntl)/2
Best case: pivot is always median
T(n) =2T(n/2) +n

= ~n logy n

Average case: !

Below. Will turn out to be ~40% slower than best
Why!?
Random pivots are “near the middle on average”



average-case analysis

Assume input is a random permutation of I, ..., n,i.e,,
that all n! permutations are equally likely

Then I5* pivot A[l] is uniformly random in I, ..., n

Important subtlety:

pivots at all recursive levels will be random, too,
(unless you do something funky in the partition phase)



number of comparisons

Let Cn be the average number of comparisons made by
quicksort when called on an array of size N. Then:

Co=C; =0 (alist of length < | is already sorted)

In the general case, there are N-| comparisons: the
pivot vs every other element (a detail: plus 2 more for
handling the “pointers cross” test to end the loop). The

pivot ends up in some position | < k < N, leaving
two subproblems of size k-1 and N-k. By Law of Total

Expectation: \l 1
Cr =N 414 3 Z (G el lBely) Tor N =0,

|/N because all values | <k <N
for pivot are equally likely.

(Analysis from Sedgewick, Algorithms in C, 3rd ed., 1998, p311-312; Knuth TAOCP v3, Ist ed 1973, p120.)



N
1<k<N
Rearrange; every
Ci is there twice
2
3 " v
C\:*\-Fl-{-\r E & T
& =5 k < N Multiply by N;
subtract same
for N-1

> Rearrange

N Oy = (JV -+ 1)01\7._1 + 2N.



NCny=(N+1)Cn_1+2N.

Cn CzV—l+ 2
N +1 N N +1

> div by N(N+1)
> substitute

Cn—9 2 2

= + — 4 —
N—=1 N  N<+1

N Cs + 2
3 S kE+1

C'n 1 i
4 ~ 2 — %2/ —dx = 2In ¥,
.Z\f + 1 1<k< N A | ¥ 5

ONIn N =~ 1.39N lg N




Notes

So, average run time, averaging over randomly ordered
inputs, = O(n log n).

A worst case input is still worst case: n? every time

(Is real data random?)

s it possible to improve the worst case?



another idea: randomize the algorithm

Algorithm as before, except pivot is a randomly selected
element of A[I]...A[n] (t top level;A[i]..A[j] for subproblem i..j)

Analysis is the same, but conclusion is different:

On any fixed input, average run time is n log n,
averaged over repeated (random) runs of the algorithm.

There are no longer any “bad inputs”, just “bad
(random) choices.” Fortunately, such choices are
improbable!



