tail bounds

Often, we want to bound the probability that a random variable X is far from its expectation.

A random variable X has mean μ
Can we bound

$$
\begin{gathered}
\operatorname{Pr}(X \geq 100 \mu) \\
\operatorname{Pr}(X \geq 1,000 \mu) \\
\operatorname{Pr}(X \geq 1,000,000 \mu)
\end{gathered}
$$

Not without additional information...

We know that randomized quicksort runs in O(n log n) expected time. But what's the probability that it takes more than $10 n \log (n)$ steps? More than $\mathrm{n}^{1.5}$ steps?
If we know the expected advertising cost is $\$ 1500 /$ day, what's the probability we go over budget? By a factor of 4 ?
We only expect 10,000 homeowners to default on their mortgages. What's the probability that I,000,000 homeowners default?
"Lake Wobegon, Minnesota, where all the women are strong, all the men are good looking, and
all the children are above average..."

Markov's inequality

An arbitrary random variable could have very bad behavior. But knowledge is power; if we know something, can we bound the badness?

Suppose we know that X is always non-negative.
Theorem: If X is a non-negative random variable, then for every $\alpha>0$, we have

$$
P(X \geq \alpha) \leq \frac{E[X]}{\alpha}
$$

Corr:

$$
P(X \geq \alpha E[X]) \leq 1 / \alpha
$$

Markov's inequality

Theorem: If X is a non-negative random variable, then for every $\alpha>0$, we have

$$
P(X \geq \alpha) \leq \frac{E[X]}{\alpha}
$$

Example: if $X=$ time to quicksort n items, expectation $E[X]$ ~ $1.4 n \log n$. What's probability that it takes >4 times as long as expected?
By Markov's inequality:

$$
P(X \geq 4 \cdot E[X]) \leq E[X] /(4 E[X])=I / 4
$$

Markov's inequality

Theorem: If X is a non-negative random variable, then for every $\alpha>0$, we have

$$
P(X \geq \alpha) \leq \frac{E[X]}{\alpha}
$$

Proof:

$$
\begin{aligned}
E[\mathrm{X}] & =\sum_{x} \mathrm{xP}(\mathrm{x}) \\
& =\sum_{x<\alpha} \mathrm{xP}(\mathrm{x})+\sum_{x \geq \alpha} \mathrm{xP}(\mathrm{x}) \\
& \geq \quad 0 \quad+\sum_{x \geq \alpha} \alpha \mathrm{P}(\mathrm{x}) \quad \underline{(x \geq 0 ; \alpha \leq x)} \\
& =\alpha \mathrm{P}(\mathrm{X} \geq \alpha)
\end{aligned}
$$

Markov's inequality

Theorem: If X is variable, then fr

- tive random 'ave

Proof:

$\mathrm{E}[\mathrm{X}]$
(x) $(x \geq 0 ; a \leq x)$
$=\alpha \mathrm{P}$.

For a random variable X, the tails of X are the parts of the PMF that are "far" from its mean.

binomial tails

Binomial distribution, $n=100, p=.5$

heavy-tailed distribution

Chebyshev's inequality

If we know more about a random variable, we can often use that to get better tail bounds.

Suppose we also know the variance.

Theorem: If Y is an arbitrary random variable with $\mathrm{E}[\mathrm{Y}]=\mu$, then, for any $\alpha>0$,

$$
P(|Y-\mu| \geq \alpha) \leq \frac{\operatorname{Var}[Y]}{\alpha^{2}}
$$

Chebyshev's inequality

Theorem: If Y is an arbitrary random variable with $\mu=\mathrm{E}[\mathrm{Y}]$, then, for any $\alpha>0$,

$$
P(|Y-\mu| \geq \alpha) \leq \frac{\operatorname{Var}[Y]}{\alpha^{2}}
$$

Proof: Let $X=(Y-\mu)^{2}$
X is non-negative, so we can apply Markov's inequality:

$$
\begin{aligned}
P(|Y-\mu| \geq \alpha) & =P\left(X \geq \alpha^{2}\right) \\
& \leq \frac{E[X]}{\alpha^{2}}=\frac{\operatorname{Var}[Y]}{\alpha^{2}}
\end{aligned}
$$

Chebyshev's inequality

Theorem: If Y is an arhitrarv random variable with \quad y $\alpha>0$,

Proof: Let X is non-neg inequality:

$$
P(\mid Y-
$$

Markov's

$$
\begin{aligned}
& \left.\alpha^{2}\right) \\
& =\frac{\operatorname{Var}[Y]}{\alpha^{2}}
\end{aligned}
$$

Chebyshev's inequality

Theorem: IfY is an arbitrary random variable with $\mu=\mathrm{E}[\mathrm{Y}]$, then, for any $\alpha>0$,

$$
P(|Y-\mu| \geq \alpha) \leq \frac{\operatorname{Var}[Y]}{\alpha^{2}}
$$

Corr: If

$$
\sigma=S D[Y]=\sqrt{\operatorname{Var}[Y]}
$$

Then:

$$
P(|Y-\mu| \geq t \sigma) \leq \frac{\sigma^{2}}{t^{2} \sigma^{2}}=\frac{1}{t^{2}}
$$

Chebyshev's inequality

Chebyshev's inequality

$$
P(|Y-\mu| \geq \alpha) \leq \frac{\operatorname{Var}[Y]}{\alpha^{2}}
$$

$\mathrm{Y}=$ comparisons in quicksort for $\mathrm{n}=1024$
$E[Y]=1.4 n \log _{2} n \approx 14000$
$\operatorname{Var}[\mathrm{Y}]=\left(\left(21-2 \pi^{2}\right) / 3\right)^{*} n^{2} \approx 441000$
(i.e. $\mathrm{SD}[\mathrm{Y}]$ ~ 664)
$\mathrm{P}(\mathrm{Y} \geq 4 \mu)=\mathrm{P}(\mathrm{Y}-\mu \geq 3 \mu) \leq \operatorname{Var}(\mathrm{Y}) /\left(9 \mu^{2}\right)<.000242$
1000 times smaller than Markov
but still overestimated?: $\sigma / \mu \approx 0.05$, so $4 \mu \approx \mu+60 \sigma$

Chebyshev's inequality

X Binomial (n, I/2)

$$
\operatorname{Pr}(X \geq 3 / 4 n)
$$

Markov: $\quad 2 / 3$
Chevyshev: $\quad 2 / n$
If $\mathrm{n}=1000$, Probability >750 H's at most 0.002
Truth:
0.0067

Chernoff bounds

Suppose $X \sim \operatorname{Bin}(n, p)$
$\mu=E[X]=p n$
Chernoff bound:
For any δ with $0<\delta<1$,

$$
\begin{aligned}
& P(X>(1+\delta) \mu) \leq e^{-\frac{\delta^{2} \mu}{2}} \\
& P(X<(1-\delta) \mu) \leq e^{-\frac{\delta^{2} \mu}{3}}
\end{aligned}
$$

Chernoff bounds

Suppose $X \sim \operatorname{Bin}(n, p)$
$\mu=\mathrm{E}[\mathrm{X}]=\mathrm{pr}$
Chernoff bou
For any $\delta \mathrm{w}$

$$
\begin{aligned}
& P(X \\
& P(X
\end{aligned}
$$

$e^{-\frac{\delta^{2} \mu}{2}}$
$e^{-\frac{\delta^{2} \mu}{3}}$

Model: 100,000 computers each independently send a packet with probability $\mathrm{q}=0.0 \mathrm{l}$ each second. The router processes its buffer every second. How many packet buffers so that router drops a packet:

- Never?

100,000

- With probability at most 10^{-6}, every hour?

1210

- With probability at most 10^{-6}, every year?

1250

- With probability at most 10^{-6}, since Big Bang? |33|
$X \sim \operatorname{Bin}(100,000,0.01), \mu=E[X]=1000$
Let $p=$ probability of buffer overflow in I second By the Chernoff bound

$$
\mathrm{P}=P(X>(1+\delta) \mu) \leq e^{-\frac{\delta^{2} \mu}{2}}
$$

Overflow probability in T seconds

$$
=I-(I-p)^{\top} \leq T p \leq T \exp \left(-\delta^{2} \mu / 2\right),
$$

which is $\leq \varepsilon$ provided $\delta \geq \sqrt{(2 / \mu) \ln (T / \varepsilon)}$.
For $\varepsilon=10^{-6}$ per hour: $\delta \approx .210$, buffers $=1210$
For $\varepsilon=10^{-6}$ per year: $\delta \approx .250$, buffers $=1250$
For $\varepsilon=10^{-6}$ per I5BY: $\delta \approx .33 \mathrm{I}$, buffers $=133 \mid$

Tail bounds - bound probabilities of extreme events
Three (of many):
Markov: $\mathrm{P}(\mathrm{X} \geq \mathrm{k} \mu) \leq \mathrm{I} / \mathrm{k}$ (weak, but general; only need $\mathrm{X} \geq 0$ and μ)
Chebyshev: $\mathrm{P}(|\mathrm{X}-\mu| \geq \mathrm{k} \sigma) \leq \mathrm{I} / \mathrm{k}^{2}$ (often stronger, but also need σ)
Chernoff: various forms, depending on underlying distribution; usually I/exponential, vs I/polynomial above
Generally, more assumptions/knowledge \Rightarrow better bounds
"Better" than exact distribution?
Maybe, e.g. if latter is unknown or mathematically messy
"Better" than, e.g., "Poisson approx to Binomial"?
Maybe, e.g. if you need rigorously " \leq " rather than just " \approx "

