Alice \& Bob are gambling (again). $X=$ Alice's gain per flip:

$$
X= \begin{cases}+1 & \text { if Heads } \\ -1 & \text { if Tails }\end{cases}
$$

$E[X]=0$
... Time passes

Alice (yawning) says "let's raise the stakes"

$$
Y= \begin{cases}+1000 & \text { if Heads } \\ -1000 & \text { if Tails }\end{cases}
$$

$\mathrm{E}[\mathrm{Y}]=0$, as before.
Are you (Bob) equally happy to play the new game?
$\mathrm{E}[\mathrm{X}]$ measures the "average" or "central tendency" of X .
What about its variability?

Definition
The variance of a random variable X with mean $E[X]=\mu$ is $\operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]$, often denoted σ^{2}.

Alice \& Bob are gambling (again). $X=$ Alice's gain per flip:

$$
\begin{aligned}
X & = \begin{cases}+1 & \text { if Heads } \\
-1 & \text { if Tails }\end{cases} \\
\mathrm{E}[\mathrm{X}] & =0
\end{aligned}
$$

... Time passes

Alice (yawning) says "let's raise the stakes"

$$
Y= \begin{cases}+1000 & \text { if Heads } \\ -1000 & \text { if Tails }\end{cases}
$$

$\mathrm{E}[\mathrm{Y}]=0$, as before.

$$
\underline{\operatorname{Var}[Y]=1,000,000}
$$

Are you (Bob) equally happy to play the new game?
$E[X]$ measures the "average" or "central tendency" of X.
What about its variability?

Definition
The variance of a random variable X with mean $E[X]=\mu$ is $\operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]$, often denoted σ^{2}.

The standard deviation of X is $\sigma=\sqrt{\operatorname{Var}[\mathrm{X}]}$

mean and variance

$\mu=\mathrm{E}[X]$ is about location; $\sigma=\sqrt{\operatorname{Var}(X)}$ is about spread

Two games:
a) flip I coin, win $Y=\$ 100$ if heads, $\$$ - 100 if tails
b) flip 100 coins, win $Z=$ (\#(heads) $-\#($ tails $)$) dollars

Same expectation in both: $\mathrm{E}[\mathrm{Y}]=\mathrm{E}[\mathrm{Z}]=0$
Same extremes in both: max gain = \$100; max loss = \$100

But
variability is very different:

$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-\mu)^{2}\right] \\
& =\sum_{x}(x-\mu)^{2} p(x) \\
& =\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
& =\sum_{x} x^{2} p(x)-2 \mu \sum_{x} x p(x)+\mu^{2} \sum_{x} p(x) \\
& =E\left[X^{2}\right]-2 \mu^{2}+\mu^{2} \\
& =E\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

Example:

What is $\operatorname{Var}[X]$ when X is outcome of one fair die?

$$
\begin{aligned}
E\left[X^{2}\right] & =1^{2}\left(\frac{1}{6}\right)+2^{2}\left(\frac{1}{6}\right)+3^{2}\left(\frac{1}{6}\right)+4^{2}\left(\frac{1}{6}\right)+5^{2}\left(\frac{1}{6}\right)+6^{2}\left(\frac{1}{6}\right) \\
& =\left(\frac{1}{6}\right)
\end{aligned}
$$

$E[X]=7 / 2$, so
$\operatorname{Var}(X)=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}$

$\operatorname{Var}[\mathrm{aX}+\mathrm{b}]=\mathrm{a}^{2} \operatorname{Var}[\mathrm{X}]$

$$
\begin{aligned}
\operatorname{Var}(a X+b) & =E\left[(a X+b-a \mu-b)^{2}\right] \\
& =E\left[a^{2}(X-\mu)^{2}\right] \\
& =a^{2} E\left[(X-\mu)^{2}\right] \\
& =a^{2} \operatorname{Var}(X)
\end{aligned}
$$

$$
X=\left\{\begin{array}{llr}
+1 & \text { if Heads } & \mathrm{E}[\mathrm{X}]=0 \\
-1 & \text { if Tails } & \operatorname{Var}[\mathrm{X}]=\mathrm{I}
\end{array}\right.
$$

$$
Y= \begin{cases}+1000 & \text { if Heads } \\ -1000 & \text { if Tails }\end{cases}
$$

$$
\begin{aligned}
\mathrm{Y} & =1000 \mathrm{X} \\
\mathrm{E}[\mathrm{Y}] & =\mathrm{E}[1000 \mathrm{X}]=1000 \mathrm{E}[\mathrm{x}]=0 \\
\operatorname{Var}[\mathrm{Y}] & =\operatorname{Var}[1000 \mathrm{X}] \\
& =10^{6} \operatorname{Var}[\mathrm{X}]=10^{6}
\end{aligned}
$$

In general: $\quad \operatorname{Var}[\mathrm{X}+\mathrm{Y}] \neq \operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$
Ex I:
Let $X= \pm I$ based on I coin flip
As shown above, $\mathrm{E}[\mathrm{X}]=0, \operatorname{Var}[\mathrm{X}]=1$
Let $Y=-X$; then $\operatorname{Var}[Y]=(-I)^{2} \operatorname{Var}[X]=I$
But $X+Y=0$, always, so $\operatorname{Var}[X+Y]=0$
Ex 2:
As another example, is $\operatorname{Var}[X+X]=2 \operatorname{Var}[X]$?

a zoo of (discrete) random variables

An experiment results in "Success" or "Failure"
X is a random indicator variable ($1=$ success, $0=$ failure)

$$
P(X=I)=P \text { and } P(X=0)=I-P
$$

X is called a Bernoulli random variable: $X \sim \operatorname{Ber}(P)$
$E[X]=E\left[X^{2}\right]=P$
$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=p-p^{2}=p(I-p)$

Examples:
coin flip
random binary digit
whether a disk drive crashed

Consider n independent random variables $\mathrm{Y}_{\mathrm{i}} \sim \operatorname{Ber}(\mathrm{p})$
$X=\sum_{i} Y_{i}$ is the number of successes in n trials
X is a Binomial random variable: $X \sim \operatorname{Bin}(n, p)$

$$
P(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i} \quad i=0,1, \ldots, n
$$

By Binomial theorem, $\quad \sum_{i=0}^{n} P(X=i)=1$
\# of heads in n coin flips
\# of I's in a randomly generated length n bit string \# of disk drive crashes in a 1000 computer cluster

$$
\begin{aligned}
\mathrm{E}[\mathrm{X}] & =\mathrm{pn} \\
\operatorname{Var}(\mathrm{X}) & =\mathrm{p}(\mathrm{I}-\mathrm{p}) \mathrm{n}
\end{aligned}
$$

binomial pmfs

PMF for $X \sim \operatorname{Bin}(10,0.5)$

PMF for $X \sim \operatorname{Bin}(10,0.25)$

binomial pmfs

PMF for $X \sim \operatorname{Bin}(30,0.5)$

PMF for $X \sim \operatorname{Bin}(30,0.1)$

mean and variance of the binomial

$$
\begin{aligned}
& E\left[X^{k}\right]=\sum_{i=0}^{n} i^{k}\binom{n}{i} p^{i}(1-p)^{n-i} \\
& =\sum_{i=1}^{n} i^{k}\binom{n}{i} p^{i}(1-p)^{n-i} \\
& \sum\binom{n}{i}=n\binom{n-1}{i-1} \\
& E\left[X^{k}\right]=n p \sum_{i=1}^{n} i^{k-1}\binom{n-1}{i-1} p^{i-1}(1-p)^{n-i} \\
& =n p \sum_{j=0}^{n-1}(j+1)^{k-1}\binom{n-1}{j} p^{j}(1-p)^{n-1-j} \\
& =n p E\left[(Y+1)^{k-1}\right]
\end{aligned}
$$

where Y is a binomial random variable with parameters $n-1, p$.
$\mathrm{k}=1$ gives: $\quad E[X]=n p ; \mathrm{k}=2$ gives $\mathrm{E}\left[\mathrm{X}^{2}\right]=\mathrm{np}[(\mathrm{n}-1) \mathrm{p}+1]$
hence: $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$

$$
\begin{aligned}
& =n p[(n-1) p+1]-(n p)^{2} \\
& =n p(1-p)
\end{aligned}
$$

products of independent r.v.s

Theorem: If X \& Y are independent, then $\mathrm{E}[\mathrm{X} \cdot \mathrm{Y}]=\mathrm{E}[\mathrm{X}] \cdot \mathrm{E}[\mathrm{Y}]$ Proof:
Let $x_{i}, y_{i}, i=1,2, \ldots$ be the possible values of X, Y.

$$
\begin{aligned}
E[X \cdot Y] & =\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right) \\
& =\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right) \\
& =\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right) \\
& =E[X] \cdot E[Y]
\end{aligned}
$$

Note: NOT true in general; see earlier example $\mathrm{E}\left[\mathrm{X}^{2}\right] \neq \mathrm{E}[\mathrm{X}]^{2}$

Theorem: If $X \& Y$ are independent, then

$$
\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]
$$

Proof: Let $\widehat{X}=X-E[X] \quad \widehat{Y}=Y-E[Y]$

$$
E[\widehat{\widehat{X}}]=0 \quad E[\widehat{\widehat{Y}}]=0
$$

$$
\operatorname{Var}[\widehat{X}]=\operatorname{Var}[X] \quad \operatorname{Var}[\widehat{Y}]=\operatorname{Var}[Y]
$$

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[\widehat{X}+\widehat{Y}] \longleftrightarrow \operatorname{Var}(\mathrm{aX}+\mathrm{b})=\mathrm{a}^{2} \operatorname{Var}(\mathrm{X})
$$

$$
=E\left[(\widehat{X}+\widehat{Y})^{2}\right]-(E[\widehat{X}+\widehat{Y}])^{2}
$$

$$
=E\left[\widehat{X}^{2}+2 \widehat{X} \widehat{Y}+\widehat{Y}^{2}\right]-0
$$

$$
=E\left[\widehat{X}^{2}\right]+2 E[\widehat{X} \widehat{Y}]+E\left[\widehat{Y}^{2}\right]
$$

$$
=\operatorname{Var}[\widehat{X}]+0+\operatorname{Var}[\widehat{Y}]
$$

$$
=\operatorname{Var}[X]+\operatorname{Var}[Y]
$$

If $Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{Ber}(p)$ and independent, then $X=\sum_{i=1}^{n} Y_{i} \sim \operatorname{Bin}(n, p)$.
$E[X]=E\left[\sum_{i=1}^{n} Y_{i}\right]=n E\left[Y_{1}\right]=n p$
$\operatorname{Var}[X]=\operatorname{Var}\left[\sum_{i=1}^{n} Y_{i}\right]=n \operatorname{Var}\left[Y_{1}\right]=n p(1-p)$

A RAID-like disk array consists of n drives, each of which will fail independently with probability p. Suppose it can operate effectively if at least one-half of its components function, e.g., by "majority vote." For what values of p is a 5 -component system more likely to operate effectively than a 3-component system?
$X_{5}=\#$ failed in 5-component system $\sim \operatorname{Bin}(5, p)$
$X_{3}=\#$ failed in 3-component system $\sim \operatorname{Bin}(3, p)$
$X_{5}=\#$ failed in 5-component system $\sim \operatorname{Bin}(5, p)$
$X_{3}=\#$ failed in 3-component system $\sim \operatorname{Bin}(3, p)$
$P(5$ component system effective $)=P\left(X_{5}<5 / 2\right)$

$$
\binom{5}{0} p^{0}(1-p)^{5}+\binom{5}{1} p^{1}(1-p)^{4}+\binom{5}{2} p^{2}(1-p)^{3}
$$

$\mathrm{P}(3$ component system effective $)=\mathrm{P}\left(\mathrm{X}_{3}<3 / 2\right)$

$$
\binom{3}{0} p^{0}(1-p)^{3}+\binom{3}{1} p^{1}(1-p)^{2}
$$

Calculation:
5-component system is better iff $p<1 / 2$

