independence




independence

Defn: Two events E and F are independent if
P(EF) = P(E) P(F)

If P(F)>0, this is equivalent to: P(E|F) = P(E)

Otherwise, they are called dependent




independence

Roll two dice, yielding values D and D,
HNE={Di=1}
F={Dy=1}
P(E) = I/6, P(F) = 1/6, P(EF) = 1/36
P(EF) = P(E) - P(F) = E and F independent
Intuitive; the two dice are not physically coupled
2) G={D, + D, =5}={(1,4),(2,3),(3,2),(4,1)}
P(E) = 1/6,P(G) = 4/36 = |1/9,P(EG) = 1/36
not independent!

E, G are dependent events

The dice are still not physically coupled, but “D; + D; = 5” couples
them mathematically: info about D constrains D;. (But dependence/
independence not always intuitively obvious; “use the definition, Luke”.)
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independence

Two events E and F are independent if
P(EF) = P(E) P(F)
If P(F)>0, this is equivalent to: P(E|F) = P(E)
Otherwise, they are called dependent

Three events E, F G are independent if

°(EF) = P(E) P(P)

P(EG)=P(E) P(G) and P(EFG) = P(E) P(F) P(G)
*(FG)= P(F) P(G)

Example: Let XY be each {-1,1} with equal prob
E={X=1}LF={Y=1},G={XY =1}
P(EF) = P(E)P(F), P(EG) = P(E)P(G), P(FG) = P(F)P(G)
but P(EFG) = /4 \!! (because P(GJ|EF) = 1)




independence

In general, events E, E,, ..., E are independent if
for every subset S of {I,2,..., n}, we have

Pl E ) =]]PE)
1€S €S

(Sometimes this property holds only for small
subsets S. E.g., E, E G on the previous slide are
pairwise independent, but not fully independent.)




independence

Theorem: E,F independent = E, F¢ independent
E = EF u EFe
Proof: P(EF<) = P(E) — P(EF) :

= P(E) - P(E) P(F) @
= P(E) (1-P(F))

= P(E) P(F9)

Theorem: if P(E)>0, P(F)>0, then
E, F independent <& P(E|F)=P(E) & P(F|E) = P(F)

Proof: Note P(EF) = P(E|F) P(F), regardless of in/dep.
Assume independent. Then

P(E)P(F) = P(EF) = P(E[F) P(F) = P(E|F)=P(E) -ty P()
Conversely, P(E|[F)=P(E) = P(E)P(F) = P(EF) (x by P(F))




biased coin

Suppose a biased coin comes up heads with probability p,

independent of other flips
P(n heads in n flips)

P(n tails in n flips)

(I-p)"

P(exactly k heads in n flips) = (Z) pk(l — p)n_k

Aside: note that the probability of some number of heads = ) (Z)pk(l —p)" =+ (1-p) =1

as it should, by the binomial theorem.
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biased coin

Suppose a biased coin comes up heads with i
probability p, independent of other flips \f\/
P(exactly k heads in n flips) = (Z) pk(l _ p)n—k

Note when p=1/2, this is the same result we would have
gotten by considering n flips in the “equally likely
outcomes” scenario. But p# |/2 makes that inapplicable.
Instead, the independence assumption allows us to
conveniently assign a probability to each of the 2"
outcomes, e.g.:

Pr(HHTHTTT) = p%(1-p)p(1-p)? = p*(1-p)*T




hashing

A data structure problem: fast access to small subset of data
drawn from a large space.

D

(Large) space of

potential data 0
items, say names
or SSNs, only a i
few of which are n-1

actually used
(Small) hash table

containing actual data

A solution: hash function h:D—{0,...,n-1} crunches/scrambles
names from large space into small one. E.g., if x is integer:

h(x) = x mod n
Good hash functions approximately randomize placement.




hashing

m strings hashed (uniformly) into a table with n buckets
Each string hashed is an independent trial
E = at least one string hashed to first bucket

What is P(E) ?

Solution:
F. = string i not hashed into first bucket (i=1,2,...,m)
P(F) =1 —I/n=(n-1)/nforall i=1,2,...,m

Event (F, F, ... F) = no strings hashed to first bucket
P(E) = 1 =P(F| Fy === Fy) o
indp

1R PE) - PED

= | = ((n-1)/n)m

=~ |-exp(-m/n)
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hashing

m strings hashed (non-uniformly) to table w/ n buckets
Each string hashed is an independent trial, with probability
p, of getting hashed to bucket i

E = At least | of buckets | to k gets 2 | string
What is P(E) ?
Solution:

F. = at least one string hashed into i-th bucket

P(E)=P(F,u--uF)= I-P((FI u - uF)9

- P(F|C FZC co o ch)

— P(no strings hashed to buckets | to k)
— (I-py-py="*-p)™
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network failure

Consider the following parallel network

n routers, it" has probability p; of failing, independently
P(there is functional path) = | — P(all routers fail)

= =pip2 Py
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network failure

Contrast: a series network

n routers, i!" has probability p; of failing, independently
P(there is functional path) =

P(no routers fail) = (1 —p,)(1 —py) "= (I — p,)
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deeper into independence

Recall: Two events E and F are independent if
P(EF) = P(E) P(F)

If E & F are independent, does that tell us anything about
P(EF|G), P(E|G), P(F|G),
when G is an arbitrary event! In particular; is

P(EF|G) = P(E|G) P(F|G) ?

In general, no.

14




deeper into independence

Roll two 6-sided dice, yielding values D, and D,
E={D, =1}
F={D,=6}
G={D,+D,=7}

E and F are independent

P(E|G) = 1/6
P(F|G) = 1/6, but
P(EF|G) = 1/6, not 1/36

so E|G and F|G are not independent!
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conditional independence

Two events E and F are called conditionally independent
given G, if

P(EF|G) = P(E|G) P(F|G)
Or, equivalently (assuming P(F)>0, P(G)>0),
P(E|FG) = P(E|G)
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do CSE majors get fewer A’s?

Say you are in a dorm with 100 students

|0 are CS majors: P(C) = 0.1
30 get straight A’s: P(A) = 0.3
3 are CS majors who get straight A’s
P(CA) = 0.03
P(CA) = P(C) P(A), so C and A independent
At faculty night, only CS majors and A students show up
So 37 students arrive

Of 37 students, 10 are CS =
P(C| CorA)=10/37=0.27 <.3 = P(A)
Seems CS major lowers your chance of straight A’s ®

Weren’t they supposed to be independent!?
In fact, CS and A are conditionally dependent at fac night
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conditioning can also break DEPENDENCE

Randomly choose a day of the week
A = { It is not a Monday }
B = { Itis a Saturday }
C={Itis the weekend }
A and B are dependent events
P(A) = 6/7, P(B) = 1/7, P(AB) = /7.
Now condition both A and B on C:
P(A|C) = I, P(B|C) = 2, P(AB|C) = >
P(AB|C) = P(A|C) P(B|C) = A|C and B|C independent

Dependent events can become independent
by conditioning on additional information!
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independence: summary

Events E & F are independent if

P(EF) = P(E) P(F), or, equivalently P(E|F) = P(E) i p(E)>0)
More than 2 events are indp if, for all subsets, joint probability
= product of separate event probabilities
Independence can greatly simplify calculations
For fixed G, conditioning on G gives a probability measure,
P(E|G)
But “conditioning” and “independence” are orthogonal:

Events E & F that are (unconditionally) independent may
become dependent when conditioned on G

Events that are (unconditionally) dependent may become
independent when conditioned on G

19




