

Readings: BT 1.1-1.2, Rosen 6.1-6.2

Sample space: S is the set of all possible outcomes of an experiment (Ω in your text book-Greek uppercase omega)

Coin flip:
Flipping two coins:
Roll of one 6 -sided die: $S=\{1,2,3,4,5,6\}$
\# emails in a day:
YouTube hrs. in a day:

$$
S=\{x: x \in Z, x \geq 0\}
$$

$$
S=\{x: x \in R, 0 \leq x \leq 24\}
$$

events

Events: $\mathbf{E} \subseteq \mathbf{S}$ is some subset of the sample space
Coin flip is heads:

$$
\mathrm{E}=\{\mathrm{Head}\}
$$

At least one head in 2 flips:
$E=\{(H, H),(H, T),(T, H)\}$
Roll of die is 3 or less:
$E=\{I, 2,3\}$
\# emails in a day < 20:
$E=\{x: x \in Z, 0 \leq x<20\}$
Wasted day (>5 YT hrs):
$E=\{x: x \in R, x>5\}$

E and F are events in the sample space S

E and F are events in the sample space S

Event "E OR F", written E \cup F

$$
\begin{aligned}
& \qquad S=\{1,2,3,4,5,6\} \\
& \text { outcome of one die roll }
\end{aligned}
$$

$$
E=\{1,2\}, F=\{2,3\}
$$

$E \cup F=\{1,2,3\}$
E and F are events in the sample space S
Event "EAND F", written E \cap F or EF

$$
S=\{1,2,3,4,5,6\}
$$

$E=\{1,2\}, F=\{2,3\}$
outcome of one die roll
$\mathrm{E} \cap \mathrm{F}=\{2\}$

set operations on events

E and F are events in the sample space S

$$
\mathrm{EF}=\varnothing \Leftrightarrow \mathrm{E}, \mathrm{~F} \text { are "mutually exclusive" }
$$

$$
S=\{1,2,3,4,5,6\}
$$

outcome of one die roll

$$
E=\{1,2\}, F=\{2,3\}, G=\{5,6\}
$$

$\mathrm{EF}=\{2\}$, not mutually exclusive, but E,G and F,G are

set operations on events

E and F are events in the sample space S
Event "not E," written \bar{E} or $\neg E$

$S=\{1,2,3,4,5,6\}$
outcome of one die roll

$$
E=\{1,2\} \quad \neg E=\{3,4,5,6\}
$$

set operations on events

DeMorgan's Laws

$$
\overline{E \cup F}=\bar{E} \cap \bar{F}
$$

$$
\overline{E \cap F}=\bar{E} \cup \bar{F}
$$

axioms of probability

Intuition: Probability as the relative frequency of an event

$$
\operatorname{Pr}(E)=\lim _{n \rightarrow \infty}(\# \text { of occurrences of } E \text { in } n \text { trials }) / n
$$

Axiom I: $0 \leq \operatorname{Pr}(E) \leq 1$
Axiom 2: $\operatorname{Pr}(S)=1$
Axiom 3: If E and F are mutually exclusive $(E F=\varnothing)$, then

$$
\operatorname{Pr}(E \cup F)=\operatorname{Pr}(E)+\operatorname{Pr}(F)
$$

For any sequence $E_{1}, E_{2}, \ldots, E_{\mathrm{n}}$ of mutually exclusive events,

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{n} E_{i}\right)=\operatorname{Pr}\left(E_{1}\right)+\cdots+\operatorname{Pr}\left(E_{n}\right)
$$

$-\operatorname{Pr}(\bar{E})=1-\operatorname{Pr}(E)$
$\operatorname{Pr}(\bar{E})=\operatorname{Pr}(S)-\operatorname{Pr}(E)$ because $S=E \cup \bar{E}$

- If $E \subseteq F$, then $\operatorname{Pr}(E) \leq \operatorname{Pr}(F)$
$\operatorname{Pr}(F)=\operatorname{Pr}(E)+\operatorname{Pr}(F-E) \geq \operatorname{Pr}(E)$
$-\operatorname{Pr}(E \cup F)=\operatorname{Pr}(E)+\operatorname{Pr}(F)-\operatorname{Pr}(E F)$
inclusion-exclusion formula
- And many others

equally likely outcomes

Simplest case: sample spaces with equally likely outcomes.

Coin flips:
Flipping two coins:
Roll of 6-sided die:
$\operatorname{Pr}($ each outcome $)=\frac{1}{|S|}$
$S=\{$ Heads, Tails $\}$
$\mathrm{S}=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$
$S=\{I, 2,3,4,5,6\}$

uniform distribution

In that case,

$$
\operatorname{Pr}(E)=\frac{\text { number of outcomes in } E}{\text { number of outcomes in } S}=\frac{|E|}{|S|}
$$

rolling two dice

Roll two 6 -sided dice. What is $\operatorname{Pr}($ sum of dice $=7$) ?

$$
\begin{aligned}
& S=\{ (I, I),(I, 2),(I, 3),(I, 4),(I, 5),(I, 6), \\
&(2, I),(2,2),(2,3),(2,4),(2,5),(2,6), \\
&(3, I),(3,2),(3,3),(3,4),(3,5),(3,6), \\
&(4, I),(4,2),(4,3),(4,4),(4,5),(4,6), \\
&(5, I),(5,2),(5,3),(5,4),(5,5),(5,6), \\
&(6, I),(6,2),(6,3),(6,4),(6,5),(6,6)\} \\
& E=\{(6, I),(5,2),(4,3),(3,4),(2,5),(I, 6)\} \\
& \\
& \operatorname{Pr}(\text { sum }=7)=|E| /|S|=6 / 36=I / 6 .
\end{aligned}
$$

twinkies and ding dongs

twinkies and ding dongs

4 Twinkies and 3 DingDongs in a bag. 3 drawn. All outcomes equally likely. What is Pr (one Twinkie and two DingDongs drawn)?

Ordered:

- Pick 3 ordered options: $|S|=7 \cdot 6 \cdot 5=210$
- Pick Twinkie as either $1^{\text {st }}, 2^{\text {nd }}$, or $3^{\text {rd }}$ item:

$$
|E|=(4 \cdot 3 \cdot 2)+(3 \cdot 4 \cdot 2)+(3 \cdot 2 \cdot 4)=72
$$

- $\operatorname{Pr}(I$ Twinkie and 2 DingDongs $)=72 / 210=12 / 35$.

Unordered:

- $|\mathrm{S}|=\binom{7}{3}=35$
- |E| $=\binom{4}{1}\binom{3}{2}=12$
- $\operatorname{Pr}(I$ Twinkie and 2 DingDongs $)=12 / 35$.

birthdays

What is the probability that, of n people, none share the same birthday?

$$
\begin{aligned}
&|S|=(365)^{n} \\
&|E|=(365)(364)(363) \cdots(365-n+I) \\
& \operatorname{Pr}(\text { no matching birthdays })=|E| /|S| \\
&=(365)(364) \ldots(365-n+I) /(365)^{n}
\end{aligned}
$$

Some values of n...

$$
\begin{aligned}
& \mathrm{n}=23: \operatorname{Pr}(\text { no matching birthdays })<0.5 \\
& \mathrm{n}=77: \operatorname{Pr}(\text { no matching birthdays })<1 / 5000 \\
& \mathrm{n}=100: \operatorname{Pr}(\text { no matching birthdays })<1 / 3,000,000 \\
& \mathrm{n}=150: \operatorname{Pr}(\ldots)<1 / 3,000,000,000,000,000
\end{aligned}
$$

$n=366$?
$\operatorname{Pr}=0$

Above formula gives this, since

$$
(365)(364) \ldots(365-n+\mid) /(365)^{n}==0
$$

when $\mathrm{n}=366$ (or greater).
Even easier to see via pigeon hole principle.

What is the probability that, of n people, none share the same birthday as you?

$$
\begin{aligned}
& |S|=(365)^{n} \\
& |E|=(364)^{n}
\end{aligned}
$$

$$
\operatorname{Pr}(\text { no birthdays matches yours })=|E| /|S|
$$

$$
=(364)^{n} /(365)^{n}
$$

Some values of $n . .$.
$n=23: \quad \operatorname{Pr}($ no matching birthdays $) \approx 0.9388$
$\mathrm{n}=77$: $\operatorname{Pr}($ no matching birthdays $) \approx 0.8096$
$\mathrm{n}=253: \operatorname{Pr}($ no matching birthdays $) \approx 0.4995$

chip defect detection

chip defect detection

n chips manufactured, one of which is defective k chips randomly selected from n for testing

What is Pr (defective chip is in k selected chips) ?

$$
|S|=\binom{n}{k} \quad|E|=\binom{1}{1}\binom{n-1}{k-1}
$$

Pr (defective chip is in k selected chips)

$$
=\frac{\binom{1}{1}\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{\frac{(n-1)!}{(k-1)!(n-k)!}}{\frac{n!}{k!(n-k)!}}=\frac{k}{n}
$$

chip defect detection

n chips manufactured, one of which is defective k chips randomly selected from n for testing

What is Pr (defective chip is in k selected chips) ?
Different analysis:

- Select k chips at random by permuting all n chips and then choosing the first k.
- Let $\mathrm{E}_{\mathrm{i}}=$ event that $\mathrm{i}^{\text {th }}$ chip is defective.
- Events $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ are mutually exclusive
- $\operatorname{Pr}\left(E_{i}\right)=I / n$ for $i=I, 2, \ldots, k$
- Thus $\operatorname{Pr}($ defective chip is selected)

$$
=\operatorname{Pr}\left(\mathrm{E}_{\mathrm{l}}\right)+\cdots+\operatorname{Pr}\left(\mathrm{E}_{\mathrm{k}}\right)=\mathrm{k} / \mathrm{n} .
$$

chip defect detection

n chips manufactured, two of which are defective k chips randomly selected from n for testing

What is $\operatorname{Pr}($ a defective chip is in k selected chips) ?

$$
\begin{aligned}
|S|=\binom{n}{k}|\mathrm{E}| & =(I \text { chip defective })+(2 \text { chips defective }) \\
& =\binom{2}{1}\binom{n-2}{k-1}+\binom{2}{2}\binom{n-2}{k-2}
\end{aligned}
$$

$\operatorname{Pr}($ a defective chip is in k selected chips)

$$
=\frac{\binom{2}{1}\binom{n-2}{k-1}+\binom{2}{2}\binom{n-2}{k-2}}{\binom{n}{k}}
$$

chip defect detection

n chips manufactured, two of which are defective k chips randomly selected from n for testing

What is Pr (a defective chip is in k selected chips) ?
Another approach:
$\operatorname{Pr}($ a defective chip is in k selected chips) $=\mathrm{I}-\operatorname{Pr}$ (none)
Pr (none):

$$
|S|=\binom{n}{k},|E|=\binom{n-2}{k}, \operatorname{Pr}(\text { none })=\frac{\binom{n-2}{k}}{\binom{n}{k}}
$$

$\operatorname{Pr}\left(\mathrm{a}\right.$ defective chip is in k selected chips) $=1-\frac{\binom{n-2}{k}}{\binom{n}{k}}$
(Same as above? Check it!)

poker hands

Consider 5 card poker hands.
A "straight" is 5 consecutive rank cards of any suit What is $\operatorname{Pr}($ straight $)$?
$|S|=\binom{52}{5}$

$|\mathrm{E}|=10 \cdot\binom{4}{1}^{5}$
$\operatorname{Pr}($ straight $)=\frac{10\binom{4}{1}^{5}}{\binom{52}{5}} \approx 0.00394$

card flipping

52 card deck. Cards flipped one at a time.
After first ace (of any suit) appears, consider next card

$$
\operatorname{Pr}(\text { next card }=\text { ace of spades })<\operatorname{Pr}(\text { next card }=2 \text { of clubs }) ?
$$

Case I: Take Ace of Spades out of deck
Shuffle remaining 5I cards, add ace of spades after first ace $|S|=52!\quad$ (all cards shuffled)
$|E|=5 \mathrm{I}$! (only I place ace of spades can be added)
Case 2: Do the same thing with the 2 of clubs
$|S|$ and $|E|$ have same size
So,

$$
\operatorname{Pr}(\text { next }=\text { Ace of spades })=\operatorname{Pr}(\text { next }=2 \text { of clubs })=1 / 52
$$

Ace of Spades: 2/6

 2 of Clubs: 2/6

Theory is the same for a 3 -card deck; $\operatorname{Pr}=2!/ 3!=1 / 329$

n persons at a party throw hats in middle, select at random. What is Pr (no one gets own hat)?
$\operatorname{Pr}($ no one gets own hat) $=$
I - $\operatorname{Pr}($ someone gets own hat)

$\operatorname{Pr}($ someone gets own hat $)=\operatorname{Pr}\left(\bigcup_{i=1}^{n}, E_{i}\right)$, where $E_{i}=$ event that person i gets own hat
$\operatorname{Pr}\left(\cup_{i=1}^{n} E_{i}\right)=\sum_{i} \operatorname{P}\left(E_{i}\right)-\sum_{i<j} \operatorname{Pr}\left(E_{i} E_{j}\right)+\sum_{i<j<k} \operatorname{Pr}\left(E_{i} E_{j} E_{k}\right) \ldots$

hats: sample space

Visualizing the sample space S :
People: Hats:

P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
H_{4}	H_{2}	H_{5}	H_{1}	H_{3}

l.e., a sample point is a permutation π of I, \ldots, n

4	2	5	1	3

$|S|=n!$
$E_{i}=$ event that person i gets own hat: $\pi(i)=i$

Counting single events:

$\mathrm{i}=2$
$?$ 2 $?$ $?$

$\left|E_{i}\right|=(n-I)$! for all i
Counting pairs:

$$
\begin{aligned}
& E_{i} E_{j}: \pi(i)=i \& \pi(j)=j \\
& \left|E_{i} E_{j}\right|=(n-2)!\text { for all } i, j
\end{aligned}
$$

\[

\]

All points in $E_{2} \cap E_{5}$
n persons at a party throw hats in middle, select at random. What is Pr (no one gets own hat)?
$E_{i}=$ event that person i gets own hat

$\operatorname{Pr}\left(\cup_{i=1}^{n} E_{i}\right)=\sum_{i} P\left(E_{i}\right)-\sum_{i<j} \operatorname{Pr}\left(E_{i} E_{j}\right)+\sum_{i<j<k} \operatorname{Pr}\left(E_{i} E_{j} E_{k}\right) \ldots$
$\operatorname{Pr}(\mathrm{k}$ fixed people get own back) $=(n-k)!/ n!$
$\binom{n}{k}$ times that $=\frac{n!}{k!(n-k)!} \frac{(n-k)!}{n!}=I / k!$
$\operatorname{Pr}($ none get own $)=1-\operatorname{Pr}($ some do $)=$

$$
I-I / I!+I / 2!-I / 3!+I / 4!\ldots+(-I)^{n} / n!\approx I / e \approx .37
$$

hats

$\operatorname{Pr}($ none get own $)=1-\operatorname{Pr}($ some do $)=$

$$
1-I+I / 2!-I / 3!+I / 4!\ldots+(-I)^{n} / n!\approx e^{-1} \approx .37
$$

