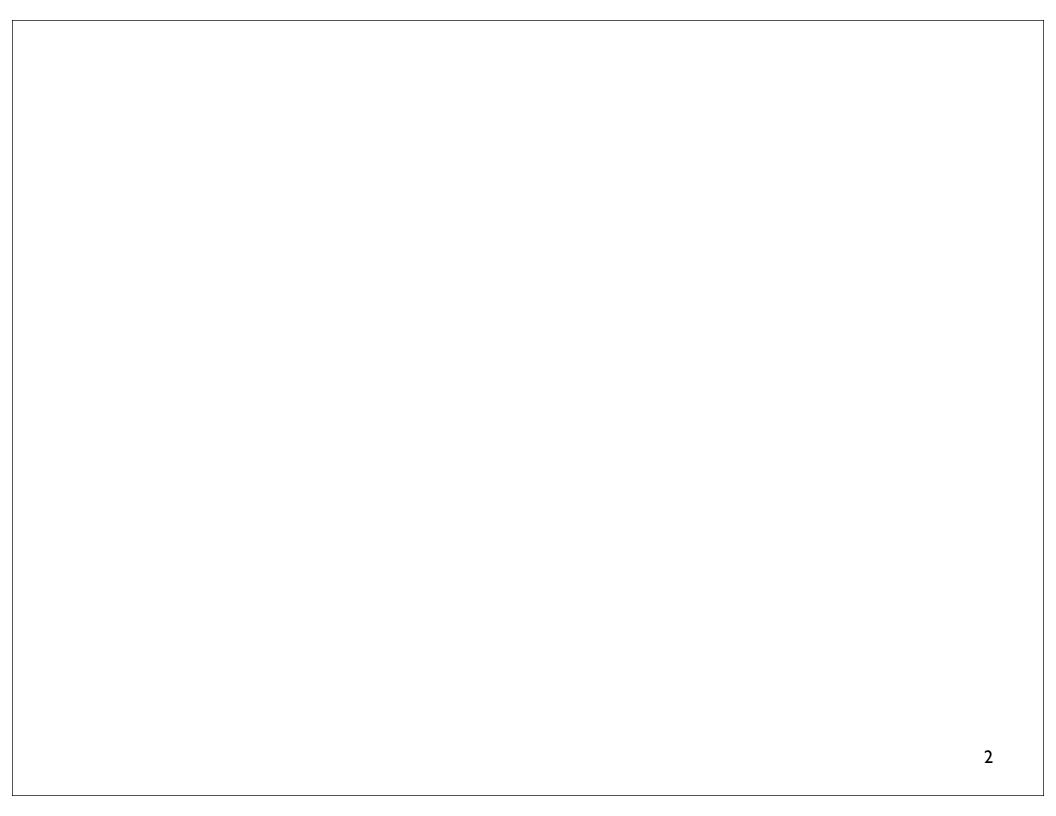
Learning From Data: MLE

Maximum Likelihood Estimators



Parameter Estimation

Assuming sample $x_1, x_2, ..., x_n$ is from a parametric distribution $f(x|\theta)$, estimate θ .

E.g.: Given sample HHTTTTTHTHTTTHH of (possibly biased) coin flips, estimate

 θ = probability of Heads

 $f(x|\theta)$ is the Bernoulli probability mass function with parameter θ

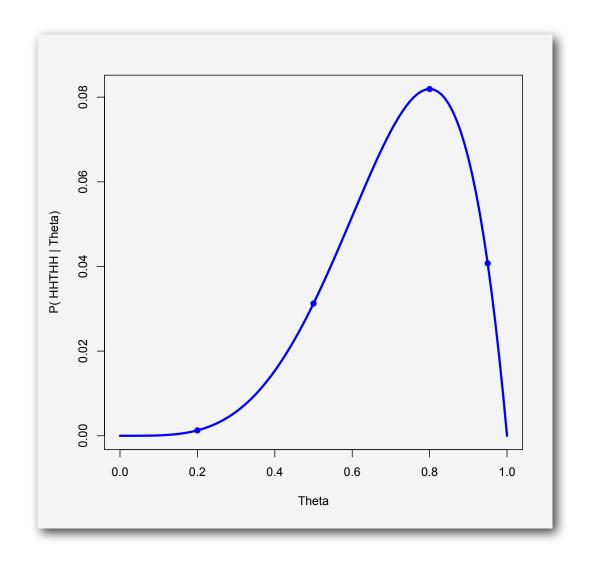
Likelihood

 $P(x \mid \theta)$: Probability of event x given model θ Viewed as a function of x (fixed θ), it's a probability E.g., $\Sigma_x P(x \mid \theta) = I$ Viewed as a function of θ (fixed x), it's a likelihood E.g., Σ_{θ} P(x | θ) can be anything; relative values of interest. E.g., if θ = prob of heads in a sequence of coin flips then P(HHTHH | .6) > P(HHTHH | .5),I.e., event HHTHH is more likely when $\theta = .6$ than $\theta = .5$ And what θ make HHTHH most likely?

Likelihood Function

 $P(HHTHH \mid \theta)$: Probability of HHTHH, given $P(H) = \theta$:

θ	$\theta^4(1-\theta)$
0.2	0.0013
0.5	0.0313
0.8	0.0819
0.95	0.0407



Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est. Likelihood of (indp) observations $x_1, x_2, ..., x_n$

$$L(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

As a function of θ , what θ maximizes the likelihood of the data actually observed

Typical approach:
$$\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta) = 0$$
 or $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta) = 0$

Example I

n coin flips, $x_1, x_2, ..., x_n$; n_0 tails, n_1 heads, $n_0 + n_1 = n$;

$$\theta$$
 = probability of heads

$$L(x_1, x_2, \dots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$$

$$\log L(x_1, x_2, \dots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$$

$$\frac{\partial}{\partial \theta} \log L(x_1, x_2, \dots, x_n \mid \theta) = \frac{-n_0}{1 - \theta} + \frac{n_1}{\theta}$$

Setting to zero and solving:

$$\hat{\theta} = \frac{n_1}{n}$$

Observed fraction of successes in sample is MLE of success probability in population

(Also verify it's max, not min, & not better on boundary)

Bias

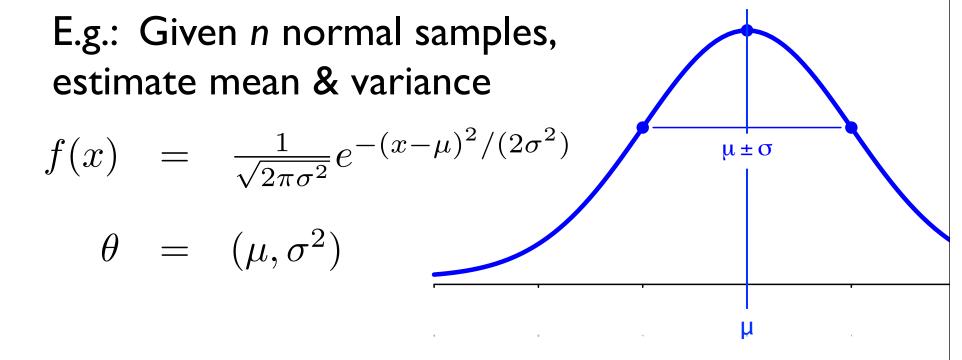
A desirable property: An estimator Y of a parameter θ is an *unbiased* estimator if $E[Y] = \theta$

For coin ex. above, MLE is unbiased: $Y = \text{fraction of heads} = (\Sigma_{1 \leq i \leq n} X_i)/n,$ $(X_i = \text{indicator for heads in } i^{th} \text{ trial}) \text{ so}$ $E[Y] = (\Sigma_{1 \leq i \leq n} E[X_i])/n = n \theta/n = \theta$

by linearity of expectation

Parameter Estimation

Assuming sample $x_1, x_2, ..., x_n$ is from a parametric distribution $f(x|\theta)$, estimate θ .



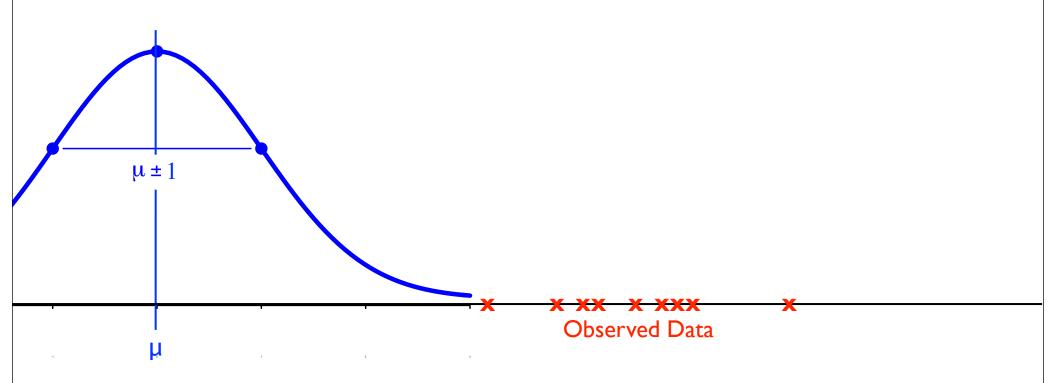
Ex2: I got data; a little birdie tells me it's normal, and promises $\sigma^2 = 1$

X XX X XXX

Observed Data

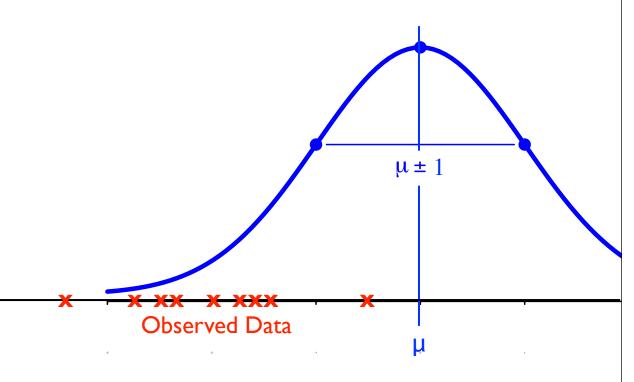
Which is more likely: (a) this?

 μ unknown, $\sigma^2 = 1$



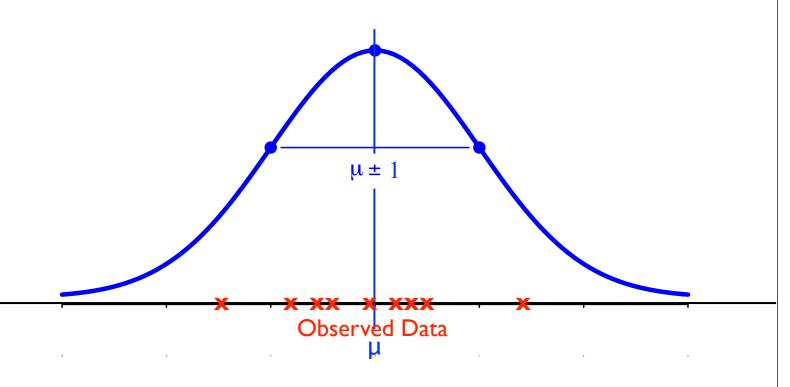
Which is more likely: (b) or this?

 μ unknown, $\sigma^2 = 1$



Which is more likely: (c) or this?

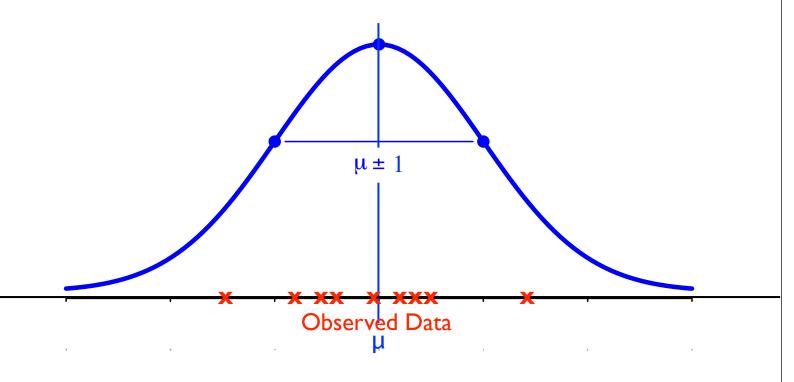
 μ unknown, $\sigma^2 = 1$



Which is more likely: (c) or this?

 μ unknown, $\sigma^2 = 1$

Looks good by eye, but how do I optimize my estimate of μ ?



Ex. 2: $x_i \sim N(\mu, \sigma^2), \ \sigma^2 = 1, \ \mu \text{ unknown}$

$$L(x_1, x_2, \dots, x_n | \theta) = \prod_{1 \le i \le n} \frac{1}{\sqrt{2\pi}} e^{-(x_i - \theta)^2/2}$$

$$\ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi - \frac{(x_i - \theta)^2}{2}$$

$$\frac{d}{d\theta} \ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{1 \le i \le n} (x_i - \theta)$$

And verify it's max, not min & not better on boundary

$$= \left(\sum_{1 \le i \le n} x_i\right) - n\theta = 0$$

$$\hat{\theta} = \left(\sum_{1 \le i \le n} x_i\right)/n = \bar{x}$$

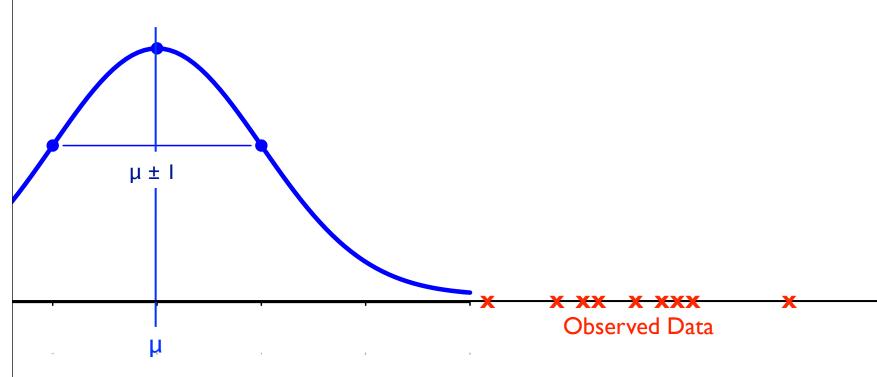
Sample mean is MLE of population mean

Ex3: I got data; a little birdie tells me it's normal (but does *not* tell me σ^2)

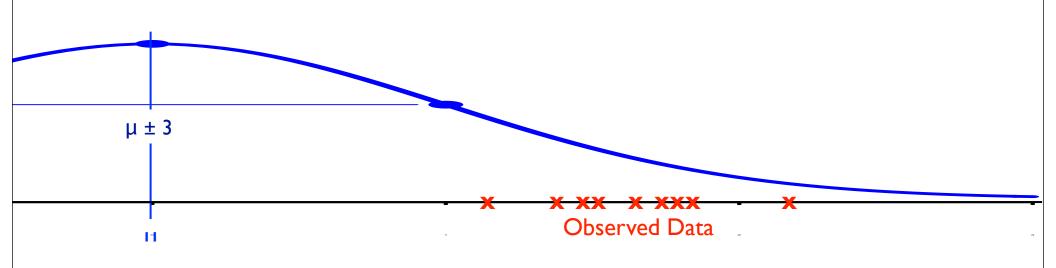
X XX X XXX

Observed Data

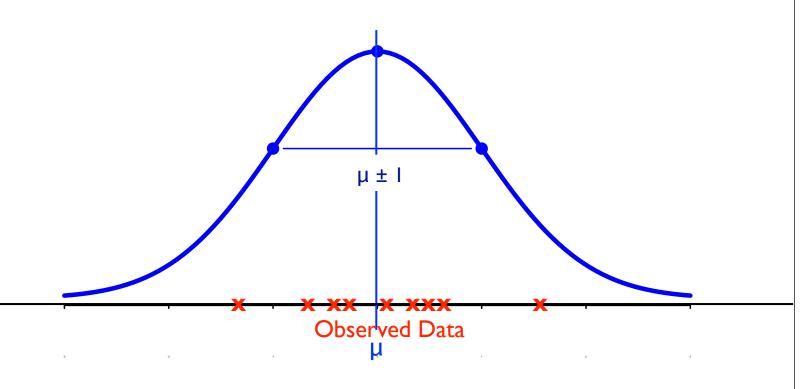
Which is more likely: (a) this?



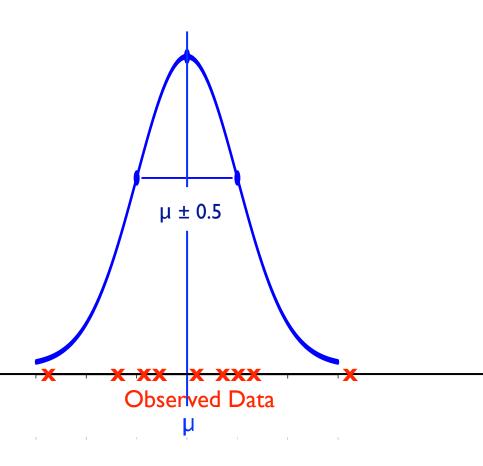
Which is more likely: (b) or this?



Which is more likely: (c) or this?



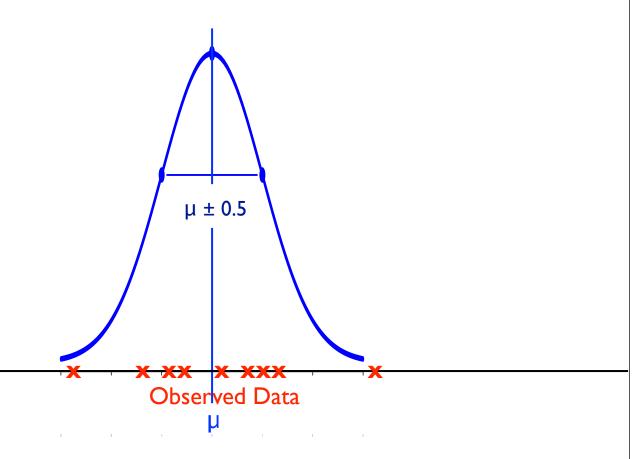
Which is more likely: (d) or this?



Which is more likely: (d) or this?

 μ , σ^2 both unknown

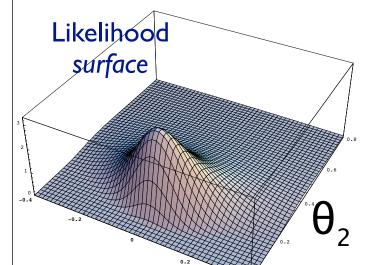
Looks good by eye, but how do I optimize my estimates of $\mu \& \sigma$?



Ex 3: $x_i \sim N(\mu, \sigma^2), \ \mu, \sigma^2$ both unknown

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$

$$\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} \frac{(x_i - \theta_1)}{\theta_2} = 0$$



$$\hat{\theta}_1 = \left(\sum_{1 \le i \le n} x_i\right)/n = \bar{x}$$

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since θ_2 drops out of the $\partial/\partial\theta_1=0$ equation 22

Ex. 3, (cont.)

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$

$$\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \frac{2\pi}{2\pi \theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0$$

$$\hat{\theta}_2 = \left(\sum_{1 \le i \le n} (x_i - \hat{\theta}_1)^2 \right) / n = \bar{s}^2$$

Sample variance is MLE of population variance

Summary

MLE is one way to estimate parameters from data

You choose the form of the model (normal, binomial, ...)

Math chooses the *value(s)* of parameter(s)

Has the intuitively appealing property that the parameters maximize the *likelihood* of the observed data; basically just assumes your sample is "representative"

Of course, unusual samples will give bad estimates (estimate normal human heights from a sample of NBA stars?) but that is an unlikely event