Learning From Data:
MLE

Maximum Likelihood Estimators







Parameter Estimation

Assuming sample xy, x2, ..., Xn is from a
parametric distribution f{x|0), estimate O.

E.g.:. Given sample HHTTTTTHTHTTTHH
of (possibly biased) coin flips, estimate

O = probability of Heads

f(x|0) is the Bernoulli probability mass function with parameter 0




Likelihood

P(x | 8): Probability of event x given model O

Viewed as a function of x (fixed 0), it’s a probability
Eg.,SxP(x|0) = |
Viewed as a function of O (fixed x), it’s a likelihood

E.g., 20 P(x | 0) can be anything; relative values of interest.

E.g.,if O = prob of heads in a sequence of coin flips then
P(HHTHH | .6) > P(HHTHH | .5),
l.e., event HHTHH is more likely when 8 = .6 than 0 = .5

And what O make HHTHH most likely?




Likelihood Function

P(HHTHH | 6 ):
Probability of HHTHH, g
given P(H) = O:
o |ee) _°
02 | 00013  ::
05 | 00313
08 | 0.0819
095 | 0.0407
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Maximum Likelihood
Parameter Estimation

One (of many) approaches to param. est.
Likelihood of (indp) observations x , x,, ..., x_

n

L(zy,22,...,2n | 0) :Hf(ilfz' 1 0)

1=1

As a function of B, what B maximizes the

likelihood of the data actually observed
Typical approach: %L(f\ f) =0 or %logL(f| ey




Example |

n coin fllps,xl,xz, s X5 N tails, n, heads, n, + n

0 |
dL/d6 =0

O = probability of heads V\
L(xy,x2,...,2, | 0) (1 —)rogm u.'mal

0.2 0.4 0.6 0.2 1

log L(x1,22,...,2, | 0) = mnglog(l —0)+nilogh
0 . —n n
splog L(z1,22,...,2, | 0) = 155+
Setting to zero and solving: Observed fraction of
successes in sample is
é — MLE of success
n probability in population

(Also verify it’s max, not min, & not better on boundary)




Bias

A desirable property: An estimator Y of a
parameter O is an unbiased estimator if

E[Y] =6

For coin ex. above, MLE is unbiased:
Y = fraction of heads = (Z1<i<nXi)/n,

(X; = indicator for heads in ith trial) so
E[Y] =\(leisn E[Xi)/n =n0B/n =20

by linearity of expectation




Parameter Estimation

Assuming sample xy, x2, ..., xn is from a
parametric distribution f(x|0), estimate 0.

E.g.: Given n normal samples,
estimate mean & variance

flz) = 1~ (z—p)?/(20?)

2mwo2

0 = (:LLv 02)




Ex2: | got data; a little birdie tells me
it’s normal, and promises 0 = |

73 HK06—6200¢ y 3

Observed Data

xr —




Which is more likely: (a) this?

M unknown, 02 = |

Observed Data




Which is more likely: (b) or this!?

M unknown, 02 = |

Observed Data




Which is more likely: (c) or this?

M unknown, 02 = |

- - . x—)(-)(—)tx—)(-x —_—
Observed Data

U




Which is more likely: (c) or this!?
U unknown, g% = |

Looks good by eye, but how do | optimize my estimate of Y4 ?

- - . x—)(-)(—)t)(-)(-x —_—
Observed Data

U




EX. 2: z; ~ N(p,0°), 0 =1, punknown

1 2
L(Qj‘l,CBQ,...,CEn‘@) — H 6—(587;—Q) /2

1<i<n " 2m

1 . — )2

lIlL(CC'l,CEQ,...’:En‘H) — Z —§1H27T— (il? )
1<i<n
d%lnL(xl,wg,...,xn\H) — Z (z; — 0)

1<i<n

And verify it's max, B B
not min & not better - (Zlgign 33@) —nt = 0

on boundary
(21991 5’7@) /n =T

Sample mean is MLE of

population mean
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Ex3: | got data; a little birdie tells me
it’s normal (but does not tell me G?)

73 HK06—6200¢ y 3

Observed Data

xr —




Which is more likely: (a) this?

U, 02 both unknown

—€ HK06—6200¢ y 3

Observed Data




Which is more likely: (b) or this?

U, 02 both unknown

Observed Data .




Which is more likely: (c) or this!?

U, 02 both unknown

IO EIOOE—I¢

Obseruved Data




Which is more likely: (d) or this!?

U, 02 both unknown

Observed Data
H

20




Which is more likely: (d) or this!?

U, 02 both unknown

Looks good by eye, but how do | optimize my estimates of 4 & G ?

Observed Data
H

21
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. 11, 0% both unknown
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Sample mean is MLE of
population mean, again
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In general, a problem like this results in 2 equations in 2 unknowns.

Easy in this case, since 0, drops out of the 0/08, = 0 equation 22




Ex. 3, (cont.)

1 (xi—91)2
In L(xy,x0,...,2,]01,02) = E ——1In2705 —
e 2 205
1 27 (CIZ‘ —91)2
0 7
965 1! (1,22, Tnlf1, 02) , 22105 " 203
1<i<n

A

0, = (Sicicalei—0)?) /n = 5

Sample variance is MLE of
bopulation variance

23




Summary

MLE is one way to estimate parameters from data
You choose the form of the model (normal, binomial, ...)
Math chooses the value(s) of parameter(s)

Has the intuitively appealing property that the parameters
maximize the likelihood of the observed data; basically just
assumes your sample is “representative”

Of course, unusual samples will give bad estimates (estimate normal
human heights from a sample of NBA stars?) but that is an unlikely event
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