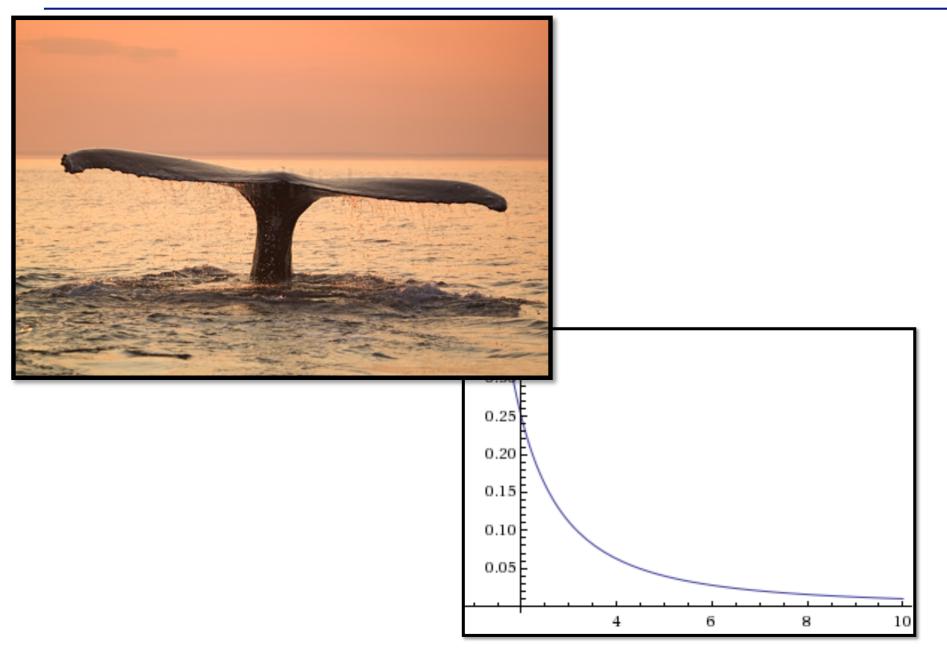
tail bounds



tail bounds

Markov's Inequality:

If X is a non-negative random variable, then for every c>0, we have

$$P(X \ge c) \le \frac{E(X)}{c}$$

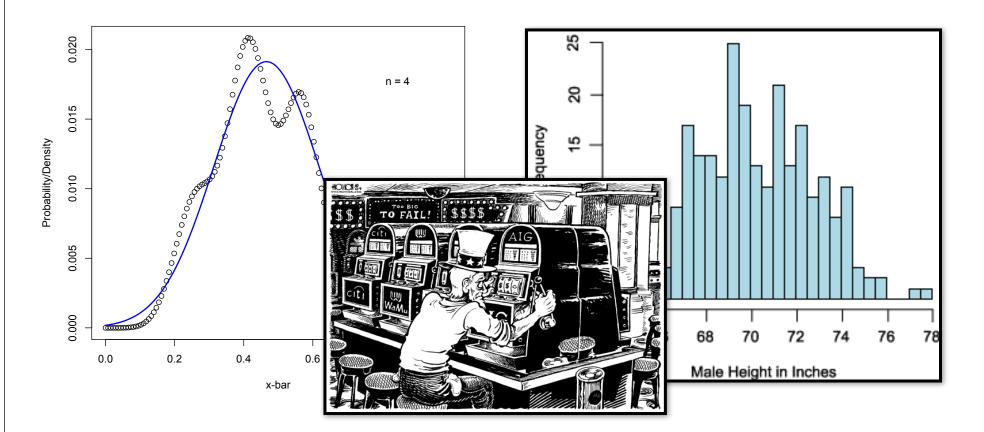
Chevyshev's Inequality: If X is an arbitrary random variable with $\mu = E(X)$ then for any c > 0

$$P(|X - \mu| \ge c) \le \frac{Var(X)}{c^2}$$

Suppose X ~ Bin(n,p), $\mu = E[X] = pn$

Chernoff bound: For any δ with $0 < \delta < 1$, $P(X > (1 + \delta)\mu) \le e^{-\frac{\delta^2 \mu}{2}}$ $P(X < (1 - \delta)\mu) \le e^{-\frac{\delta^2 \mu}{3}}$

the law of large numbers & the CLT



$$\Pr\left(\lim_{n \to \infty} \left(\frac{X_1 + \dots + X_n}{n}\right) = \mu\right) = 1$$

sums of random variables

If X,Y are independent, what is the distribution of Z = X + Y?

Discrete case:

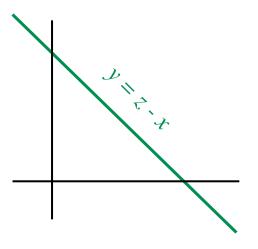
 $p_Z(z) = \sum_x p_X(x) \bullet p_Y(z - x)$

Continuous case:

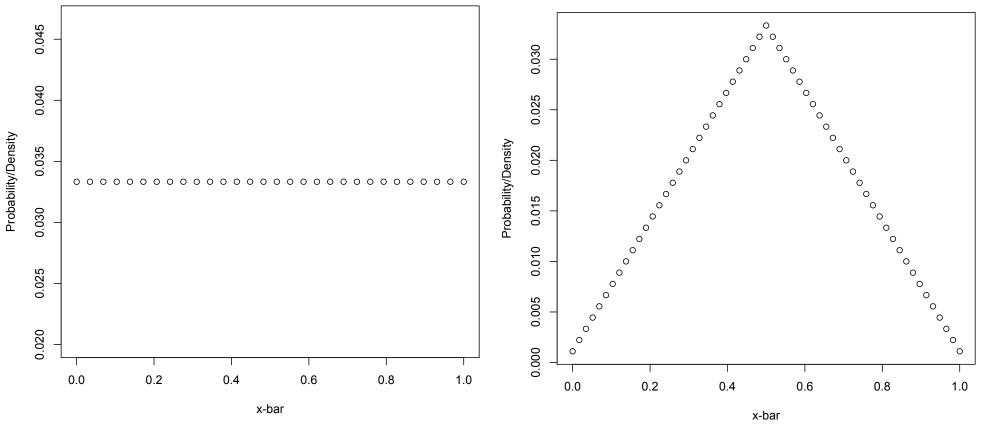
$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) \bullet f_Y(z-x) dx$$

W = X + Y + Z? Similar, but double sums/integrals

V = W + X + Y + Z? Similar, but triple sums/integrals



If X and Y are *uniform*, then Z = X + Y is *triangular*:



Intuition: X + Y \approx 0 or \approx 1 is rare, but many ways to get X + Y \approx 0.5

moment generating functions (section 4.4)

Powerful math tricks for dealing with distributions

We won't do much with it, but mentioned/used in book, so a very brief introduction:

The kth moment of r.v. X is $E[X^k]$; M.G.F. is $M(t) = E[e^{tX}]$ $e^{tX} = X^0 \frac{t^0}{0!} + X^1 \frac{t^1}{1!} + X^2 \frac{t^2}{2!} + X^3 \frac{t^3}{3!} + \cdots$ $M(t) = E[e^{tX}] = E[X^0]\frac{t^0}{0!} + E[X^1]\frac{t^1}{1!} + E[X^2]\frac{t^2}{2!} + E[X^3]\frac{t^3}{3!} + \cdots$ $\frac{d}{dt}M(t) = 0 + E[X^1] + E[X^2]\frac{t^1}{1!} + E[X^3]\frac{t^2}{2!} + \cdots$ $0 + 0 + E[X^2] + E[X^3]\frac{t^1}{1!} + \cdots$ $\frac{d^2}{dt^2}M(t) =$ $\frac{d}{dt}M(t)\big|_{t=0} = E[X] \qquad \left| \frac{d^2}{dt^2}M(t) \right|_{t=0} = E[X^2] \qquad \dots \qquad \left| \frac{d^k}{dt^k}M(t) \right|_{t=0} = E[X^k] \qquad \dots$ An example:

MGF of normal(μ , σ^2) is exp(μ t+ σ^2 t²/2)

Two key properties:

I. MGF of sum independent r.v.s is product of MGFs:

 $M_{X+Y}(t) = E[e^{t(X+Y)}] = E[e^{tX} e^{tY}] = E[e^{tX}] E[e^{tY}] = M_X(t) M_Y(t)$

2. Invertibility: MGF uniquely determines the distribution.

e.g.: $M_X(t) = \exp(at+bt^2)$, with b>0, then X ~ Normal(a,2b)

Important example: sum of indep normals is normal:

 $\begin{aligned} X \sim Normal(\mu_1, \sigma_1^2) & Y \sim Normal(\mu_2, \sigma_2^2) \\ M_{X+Y}(t) &= \exp(\mu_1 t + \sigma_1^2 t^2/2) \bullet \exp(\mu_2 t + \sigma_2^2 t^2/2) \\ &= \exp[(\mu_1 + \mu_2)t + (\sigma_1^2 + \sigma_2^2)t^2/2] \end{aligned}$

i.i.d. (independent, identically distributed) random vars

 $X_1, X_2, X_3, ...$

 X_i has $\mu = E[X_i] < \infty$ and $\sigma^2 = Var[X_i]$

$$\mathsf{E}[\sum_{i=1}^{\mathsf{n}} \mathsf{X}_i] = \mathsf{n}\mu$$
 and $\mathsf{Var}[\sum_{i=1}^{\mathsf{n}} \mathsf{X}_i] = \mathsf{n}\sigma^2$

So limits as $n \rightarrow \infty$ don't exist (except in the degenerate case where $\mu = \sigma^2 = 0$).

i.i.d. (independent, identically distributed) random vars

 X_1, X_2, X_3, \dots

 X_i has $\mu = E[X_i] < \infty$ and $\sigma^2 = Var[X_i]$

Consider the **empirical/sample mean:** $\overline{X} = \frac{1}{n} \sum X_i$

The Weak Law of Large Numbers: For any $\varepsilon > 0$, as $n \rightarrow \infty$

$$\Pr(|\overline{X} - \mu| > \epsilon) \longrightarrow 0.$$

weak law of large numbers

For any $\varepsilon > 0$, as $n \rightarrow \infty$

$$\Pr(|\overline{X} - \mu| > \epsilon) \longrightarrow 0.$$

Proof: (assume $\sigma^2 < \infty$)

$$E[\overline{X}] = E[\frac{X_1 + \dots + X_n}{n}] = \mu$$
$$\operatorname{Var}[\overline{X}] = \operatorname{Var}[\frac{X_1 + \dots + X_n}{n}] = \frac{\sigma^2}{n}$$

By Chebyshev inequality,

$$\Pr(|\overline{X} - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2} \longrightarrow 0$$

strong law of large numbers

i.i.d. (independent, identically distributed) random vars

$$X_{l}, X_{2}, X_{3}, \dots$$

$$\overline{X}_{i} \text{ has } \mu = E[X_{i}] < \infty$$

$$\overline{X}_{i} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

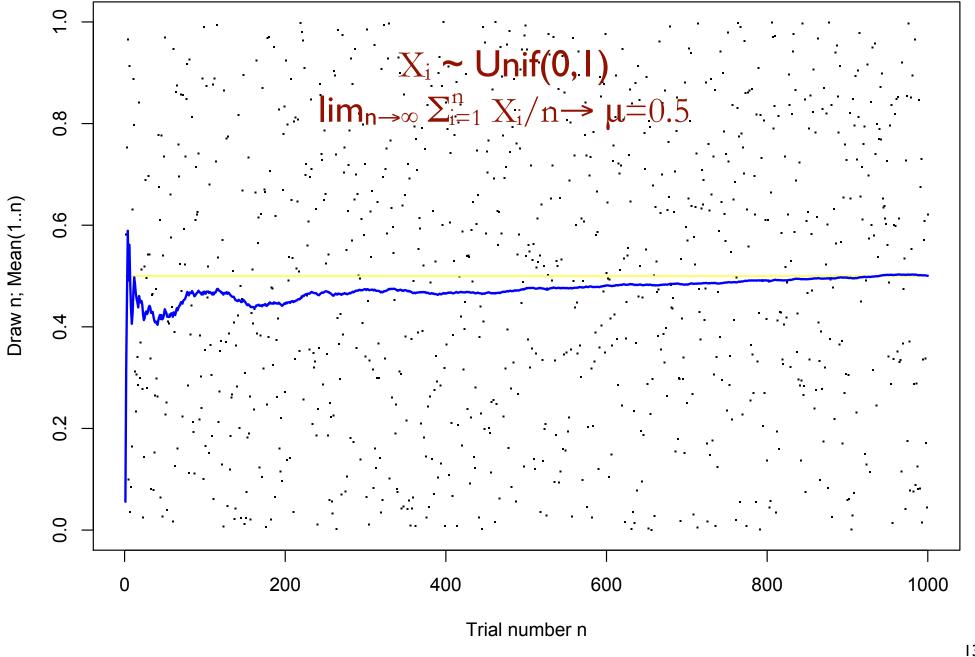
$$\sum_{i=1}^{n} \sum_{i=1}^{n} X_{i} = 1$$

$$\Pr\left(\lim_{n \to \infty} \left(\frac{X_1 + \dots + X_n}{n}\right) = \mu\right) = 1$$

Strong Law \Rightarrow Weak Law (but not vice versa)

Strong law implies that for any $\varepsilon > 0$, there are only finite number of n satisfying the weak law condition $|\overline{X} - \mu| \ge \epsilon$

sample mean \rightarrow population mean



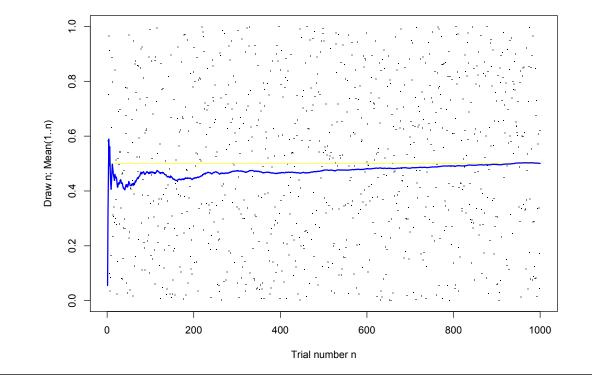
the law of large numbers

Note: $D_n = E[|\Sigma_{1 \le i \le n}(X_i - \mu)|]$ grows with n, but $D_n/n \rightarrow 0$

Justifies the "frequency" interpretation of probability

but not "Regression toward the mean"

and not gambler's fallacy: "I'm due for a win!"

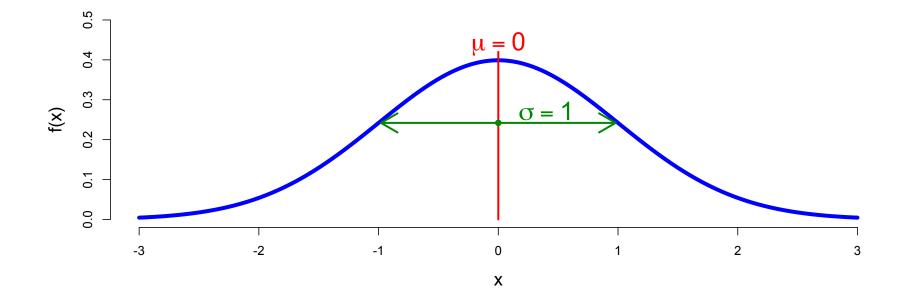


normal random variable

X is a normal random variable $X \sim N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

 $E[X] = \mu$ $Var[X] = \sigma^2$



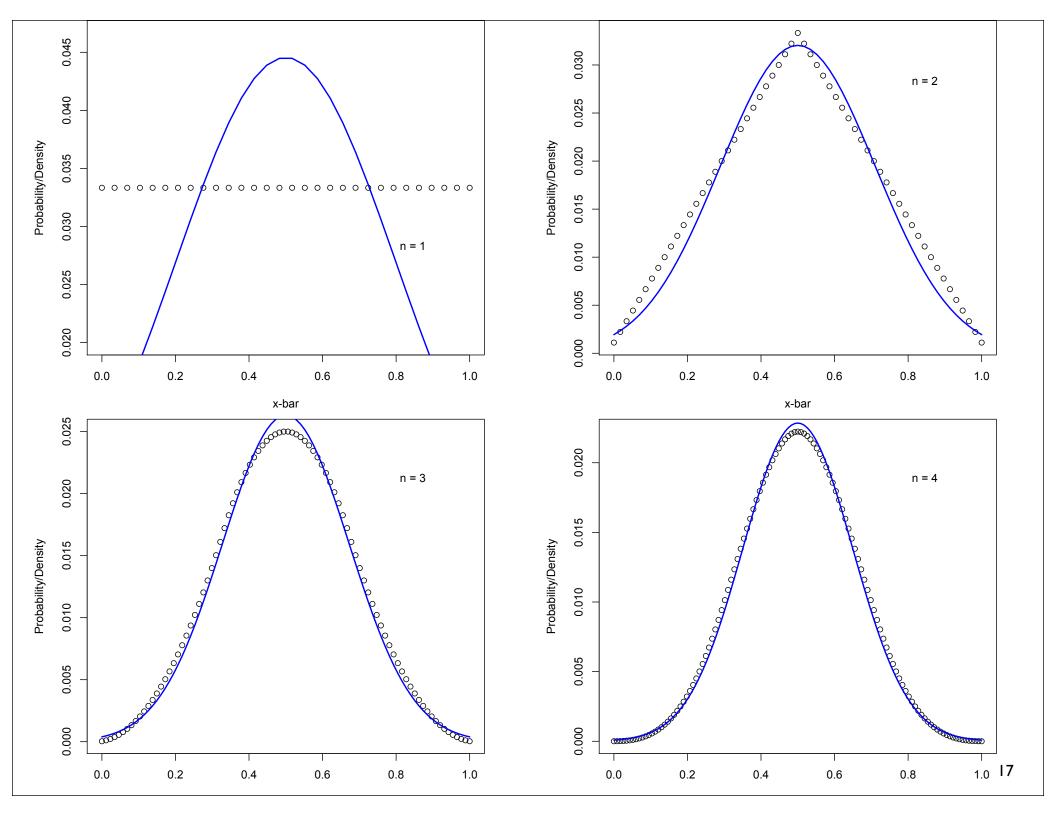
i.i.d. (independent, identically distributed) random vars X_1, X_2, X_3, \ldots

 X_i has $\mu = E[X_i]$ and $\sigma^2 = Var[X_i]$ As $n \rightarrow \infty$,

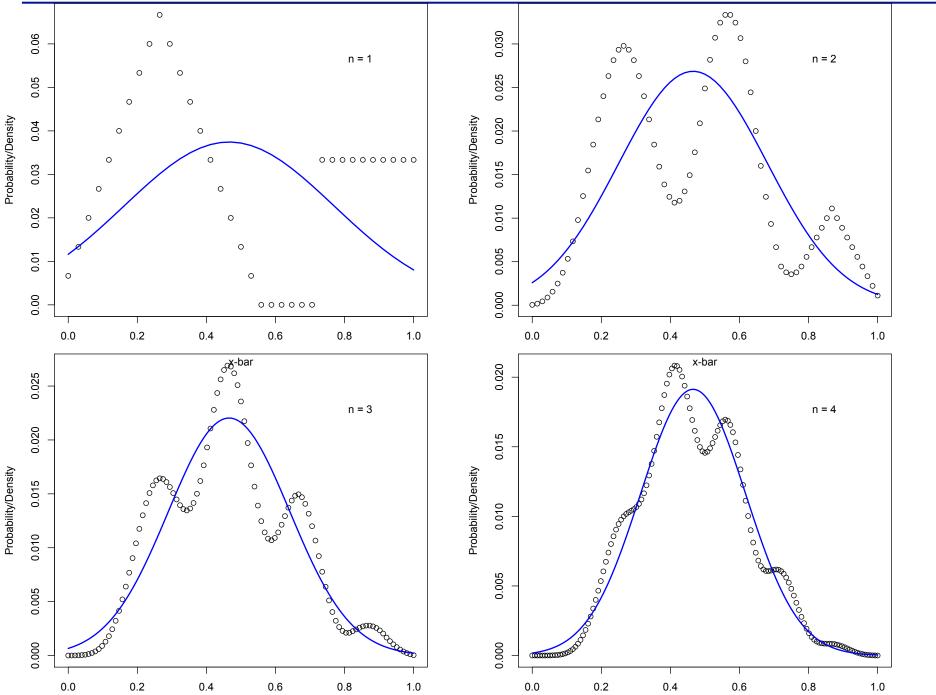
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

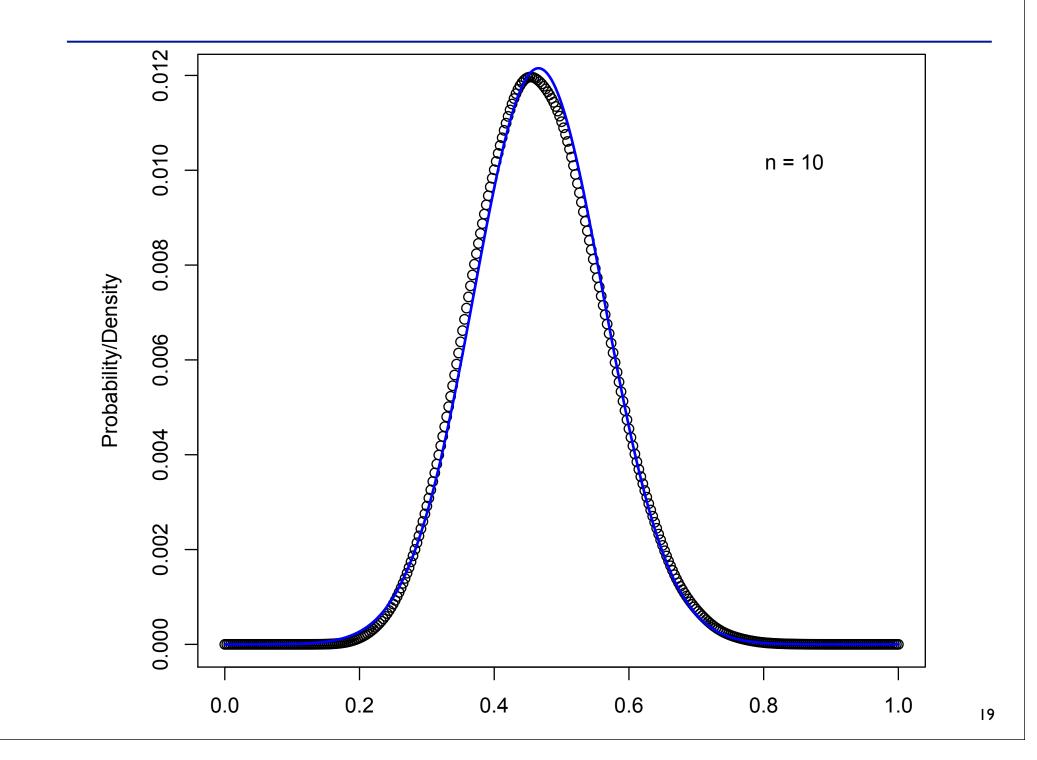
Restated: As $n \rightarrow \infty$,

$$\frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \longrightarrow N(0, 1)$$



CLT applies even to even wacky distributions





CLT is the reason many things appear normally distributed Many quantities = sums of (roughly) independent random vars

Exam scores: sums of individual problems People's heights: sum of many genetic & environmental factors Measurements: sums of various small instrument errors

in the real world...

Human height is approximately normal.

Why might that be true?

R.A. Fisher (1918)

from CLT if height

noted it would follow

25 20 Frequency 5 9 ŝ 78 64 76 Male Height in Inches

were the sum of many independent random effects, e.g. many genetic factors (plus some environmental ones like diet). I.e., suggested part of *mechanism* by looking at *shape* of the curve. Distribution of X + Y: summations, integrals (or MGF)

Distribution of $X + Y \neq$ distribution X or Y in general

Distribution of X + Y is normal if X and Y are normal (ditto for a few other special distributions)

Sums generally don't "converge," but averages do:

Weak Law of Large Numbers

Strong Law of Large Numbers

Most surprisingly, averages all converge to the same distribution: the Central Limit Theorem says sample mean \rightarrow normal