
tail bounds

1



tail bounds

Markov’s Inequality:

 If X is a non-negative random variable, then for every c>0, we 
have

Chevyshev’s Inequality:  If X is an arbitrary random variable 
with                      then for any c > 0
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P (X ≥ c) ≤ E(X)

c

µ = E(X)

P (|X − µ| ≥ c) ≤ V ar(X)

c2



Chernoff  bound

 Suppose X ~ Bin(n,p),        μ = E[X] = pn

 Chernoff bound:
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the law of  large numbers & the CLT
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sums of  random variables

If X,Y are independent, what is the distribution of  Z = X + Y ?

Discrete case:

  pZ(z) = Σx pX(x) • pY(z-x) 

Continuous case:

fZ(z) = ∫-∞   fX(x) • fY(z-x) dx

W = X + Y + Z ?   Similar, but double sums/integrals

V = W + X + Y + Z ?   Similar, but triple sums/integrals
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+∞

y = z - x



example

If X and Y are uniform,  then Z = X + Y is triangular:

Intuition: X + Y ≈ 0 or ≈ 1 is rare, but many ways to get X + Y ≈ 0.5
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moment generating functions (section 4.4)

Powerful math tricks for dealing with distributions 

We won’t do much with it, but mentioned/used in book, so a very 
brief introduction: 

The kth moment of r.v.  X is E[Xk];  M.G.F.  is M(t) = E[etX]
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mgf  examples

An example:

MGF of normal(μ,σ2) is exp(μt+σ2t2/2)

Two key properties:

1. MGF of sum independent r.v.s is product of MGFs:

MX+Y(t) = E[et(X+Y)] = E[etX etY] = E[etX] E[etY] = MX(t) MY(t)

2. Invertibility: MGF uniquely determines the 
distribution.

e.g.: MX(t) = exp(at+bt2),with b>0, then X ~ Normal(a,2b)

Important example: sum of indep normals is normal:

              X~Normal(μ1,σ1
2)   Y~Normal(μ2,σ2

2)   

MX+Y(t) = exp(μ1t + σ12t2/2) • exp(μ2t + σ22t2/2)

             = exp[(μ1+μ2)t + (σ12+σ22)t2/2]
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“laws of  large numbers”

i.i.d. (independent, identically distributed) random vars 

    X1, X2, X3, …

Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi]

So limits as n→∞ don’t exist (except in the degenerate case 
where μ = σ2 = 0).
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weak law of  large numbers

i.i.d. (independent, identically distributed) random vars 

    X1, X2, X3, …

Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi]

Consider the empirical/sample mean:

The Weak Law of Large Numbers: 
    For any ε > 0, as n → ∞
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weak law of  large numbers

For any ε > 0, as n → ∞

Proof: (assume σ2  < ∞)

By Chebyshev inequality,

11



strong law of  large numbers

i.i.d. (independent, identically distributed) random vars 

    X1, X2, X3, …

Xi has μ = E[Xi] < ∞

Strong Law ⇒ Weak Law (but not vice versa)

Strong law implies that for any ε > 0, there are only finite 
number of n satisfying the weak law condition 
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sample mean → population mean
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the law of  large numbers

Note: Dn = E[ | Σ1≤i≤n(Xi-μ) | ] grows with n, but Dn/n → 0

Justifies the “frequency” interpretation of probability

but not “Regression toward the mean”

and not gambler’s fallacy:  “I’m due for a win!”
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normal random variable

 X is a normal random variable   X ~ N(μ,σ2)
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the central limit theorem (CLT)

i.i.d. (independent, identically distributed) random vars

   X1, X2, X3, …

Xi has μ = E[Xi] and σ2 = Var[Xi]
As n → ∞, 

  

Restated:  As n → ∞,
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CLT applies even to even wacky distributions
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CLT in the real world

CLT is the reason many things appear normally distributed
Many quantities = sums of (roughly) independent random vars

Exam scores:  sums of individual problems
People’s heights: sum of many genetic & environmental factors
Measurements: sums of various small instrument errors
...
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Human height is 
approximately normal.

Why might that be 
true?  

R.A. Fisher (1918) 
noted it would follow 
from CLT if height 
were the sum of 
many independent random effects, e.g. many genetic factors (plus 
some environmental ones like diet). I.e., suggested part of mechanism 
by looking at shape of the curve.

in the real world…
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summary

Distribution of X + Y: summations, integrals (or MGF)

Distribution of X + Y ≠ distribution X or Y in general

Distribution of X + Y is normal if X and Y are normal (ditto for a 
few other special distributions)

Sums generally don’t “converge,” but averages do:

Weak  Law of Large Numbers

Strong Law of Large Numbers

Most surprisingly, averages all converge to the same distribution:  

the Central Limit Theorem says sample mean → normal
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