Markov's Inequality:

If X is a non-negative random variable, then for every $c>0$, we have

$$
P(X \geq c) \leq \frac{E(X)}{c}
$$

Chevyshev's Inequality: If X is an arbitrary random variable with $\mu=E(X)$ then for any $\mathrm{c}>0$

$$
P(|X-\mu| \geq c) \leq \frac{\operatorname{Var}(X)}{c^{2}}
$$

Chernoff bound

Suppose $X \sim \operatorname{Bin}(n, p), \quad \mu=E[X]=p n$
Chernoff bound:
For any δ with $0<\delta<1$,

$$
\begin{aligned}
& P(X>(1+\delta) \mu) \leq e^{-\frac{\delta^{2} \mu}{2}} \\
& P(X<(1-\delta) \mu) \leq e^{-\frac{\delta^{2} \mu}{3}}
\end{aligned}
$$

the law of large numbers \& the CLT

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\mu\right)=1
$$

If X, Y are independent, what is the distribution of $Z=X+Y$?
Discrete case:

$$
\operatorname{paz}_{\mathrm{Z}}(z)=\sum_{x} \mathrm{p}_{\mathrm{X}}(x) \cdot \mathrm{p}_{\mathrm{Y}}(z-x)
$$

Continuous case:

$$
\mathrm{f}_{\mathrm{Z}}(z)=\int_{-\infty}^{+\infty} \mathrm{f}_{\mathrm{X}}(x) \cdot \mathrm{f}_{\mathrm{Y}}(z-x) \mathrm{dx}
$$

$W=X+Y+Z$? Similar, but double sums/integrals
$V=W+X+Y+Z$? Similar, but triple sums/integrals

If X and Y are uniform, then $Z=X+Y$ is triangular:

Intuition: $X+Y \approx 0$ or ≈ 1 is rare, but many ways to get $X+Y \approx 0.5$

Powerful math tricks for dealing with distributions
We won't do much with it, but mentioned/used in book, so a very brief introduction:
The $k^{\text {th }}$ moment of r.v. X is $E\left[X^{k}\right] ;$ M.G.F. is $M(t)=E\left[e^{t X}\right]$

$$
\begin{aligned}
& e^{t X}=X^{0} \frac{t^{0}}{0!}+X^{1} \frac{t^{1}}{1!}+\quad X^{2} \frac{t^{2}}{2!}+\quad X^{3} \frac{t^{3}}{3!}+\cdots \\
& M(t)=E\left[e^{t X}\right]=E\left[X^{0}\right] \frac{t^{0}}{0!}+E\left[X^{1}\right] \frac{t^{1}}{1!}+E\left[X^{2}\right] \frac{t^{2}}{2!}+E\left[X^{3}\right] \frac{t^{3}}{3!} \quad+\cdots \\
& \frac{d}{d t} M(t)=0+E\left[X^{1}\right]+E\left[X^{2}\right] \frac{t^{1}}{1!}+E\left[X^{3}\right] \frac{t^{2}}{2!}+ \\
& \frac{d^{2}}{d t^{2}} M(t)=0+0+E\left[X^{2}\right]+E\left[X^{3}\right] \frac{t^{1}}{1!}+ \\
& \left.\frac{d}{d t} M(t)\right|_{t=0}=E[X] \\
& \left.\frac{d^{2}}{d t^{2}} M(t)\right|_{t=0}=E\left[X^{2}\right] \ldots \\
& \left.\frac{d^{k}}{d t^{k}} M(t)\right|_{t=0}=E\left[X^{k}\right]
\end{aligned}
$$

An example:
MGF of normal $\left(\mu, \sigma^{2}\right)$ is $\exp \left(\mu \mathrm{t}+\sigma^{2} \mathrm{t}^{2} / 2\right)$
Two key properties:
I. MGF of sum independent r.v.s is product of MGFs:

$$
M_{X+Y}(t)=E\left[e^{t(X+Y)}\right]=E\left[e^{t X} e^{t^{Y}}\right]=E\left[e^{t X}\right] E\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t)
$$

2. Invertibility: MGF uniquely determines the distribution.

$$
\text { e.g.: } M_{x}(t)=\exp \left(a t+b t^{2}\right) \text {, with } b>0 \text {, then } X \sim \operatorname{Normal}(a, 2 b)
$$

Important example: sum of indep normals is normal:

$$
\begin{aligned}
& X \sim \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right) \quad Y \sim \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right) \\
M_{X+Y}(\mathrm{t}) & =\exp \left(\mu_{1} t+\sigma_{1}{ }^{2} t^{2} / 2\right) \cdot \exp \left(\mu_{2} t+\sigma_{2}^{2} t^{2} / 2\right) \\
& =\exp \left[\left(\mu_{1}+\mu_{2}\right) t+\left(\sigma_{1}{ }^{2}+\sigma_{2}^{2}\right) t^{2} / 2\right]
\end{aligned}
$$

i.i.d. (independent, identically distributed) random vars $X_{1}, X_{2}, X_{3}, \ldots$
X_{i} has $\mu=E\left[X_{i}\right]<\infty$ and $\sigma^{2}=\operatorname{Var}\left[X_{i}\right]$
$\mathrm{E}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right]=\mathrm{n} \mu$ and $\operatorname{Var}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right]=\mathrm{n} \sigma^{2}$

So limits as $\mathrm{n} \rightarrow \infty$ don't exist (except in the degenerate case where $\mu=\sigma^{2}=0$).
i.i.d. (independent, identically distributed) random vars

$$
X_{1}, X_{2}, X_{3}, \ldots
$$

X_{i} has $\mu=\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$ and $\sigma^{2}=\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]$
Consider the empirical/sample mean: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
The Weak Law of Large Numbers:
For any $\varepsilon>0$, as $\mathrm{n} \rightarrow \infty$

$$
\operatorname{Pr}(|\bar{X}-\mu|>\epsilon) \longrightarrow 0
$$

For any $\varepsilon>0$, as $n \rightarrow \infty$

$$
\operatorname{Pr}(|\bar{X}-\mu|>\epsilon) \longrightarrow 0
$$

Proof: (assume $\sigma^{2}<\infty$)

$$
\begin{gathered}
E[\bar{X}]=E\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\mu \\
\operatorname{Var}[\bar{X}]=\operatorname{Var}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\frac{\sigma^{2}}{n}
\end{gathered}
$$

By Chebyshev inequality,

$$
\operatorname{Pr}(|\bar{X}-\mu| \geq \epsilon) \leq \frac{\sigma^{2}}{n \epsilon^{2}} \longrightarrow 0
$$

i.i.d. (independent, identically distributed) random vars

$$
\begin{aligned}
& 2, \mathrm{X}_{3}, \ldots \\
& =\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty \\
& \operatorname{Pr}\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\mu\right)=1
\end{aligned}
$$

Strong Law \Rightarrow Weak Law (but not vice versa)
Strong law implies that for any $\varepsilon>0$, there are only finite number of \mathbf{n} satisfying the weak law condition $|\bar{X}-\mu| \geq \epsilon$

sample mean \rightarrow population mean

Note: $D_{n}=E\left[\left|\Sigma_{1 \leq i \leq n}\left(X_{i}-\mu\right)\right|\right]$ grows with n, but $D_{n} / n \rightarrow 0$

Justifies the "frequency" interpretation of probability but not "Regression toward the mean" and not gambler's fallacy: "I'm due for a win!"

X is a normal random variable $X \sim N\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
f(x) & =\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \\
E[X] & =\mu \quad \operatorname{Var}[X]=\sigma^{2}
\end{aligned}
$$

the central limit theorem (CLT)

i.i.d. (independent, identically distributed) random vars $X_{1}, X_{2}, X_{3}, \ldots$
X_{i} has $\mu=E\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left[X_{i}\right]$
As $n \rightarrow \infty$,

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Restated: As n $\rightarrow \infty$,

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \longrightarrow N(0,1)
$$

CLT applies even to even wacky distributions

CLT is the reason many things appear normally distributed Many quantities = sums of (roughly) independent random vars

Exam scores: sums of individual problems
People's heights: sum of many genetic \& environmental factors
Measurements: sums of various small instrument errors

Human height is approximately normal.

Why might that be true?
R.A. Fisher (1918) noted it would follow from CLT if height were the sum of many independent random effects, e.g. many genetic factors (plus some environmental ones like diet). l.e., suggested part of mechanism by looking at shape of the curve.

Distribution of $X+Y$: summations, integrals (or MGF)
Distribution of $X+Y \neq$ distribution X or Y in general
Distribution of $X+Y$ is normal if X and Y are normal (ditto for a few other special distributions)
Sums generally don't "converge," but averages do:
Weak Law of Large Numbers
Strong Law of Large Numbers

Most surprisingly, averages all converge to the same distribution: the Central Limit Theorem says sample mean \rightarrow normal

