tail bounds




tail bounds

MarkovV’s Inequality:
If X is a non-negative random variable, then for every ¢>0, we

have
E(X)
C

P(X >¢) <

ChevysheV’s Inequality: If X is an arbitrary random variable
with = FE(X) thenforanyc>0

Var(X)
P(X > ) < ¥




Chernoff bound

Suppose X ~ Bin(n,p), M =E[X] =pn

Chernoff bound:
For any 0 with 0 < 9§ < 1,
2
P(X > (1+468)u) <e =
5211

PX<(1—-90)u)<e 3




Probability/Density

the law of large numbers & the CLT
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sums of random variables

If X,Y are independent, what is the distribution of Z=X +Y?
Discrete case: \

pz(z) = 2x px(x) ® py(z-x)

Continuous case:

£2(2) = Joo® fx(x) ® fy(z-x) dx
W=X+Y + Z? Similar, but double sums/integrals

V=W+ X+Y + Z?! Similar, but triple sums/integrals




Probability/Density
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example

If X andY are uniform, then Z = X +Y is triangular:
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Intuition: X +Y = 0 or = | is rare, but many ways to get X +Y = 0.5




moment generating functions (section 4.4)

Powerful math tricks for dealing with distributions

We won’t do much with it, but mentioned/used in book, so a very
brief introduction:

The k" moment of rv. X is E[X"];[M.G.F. is M(t) = E[etx]]

X = X0t 4 X't o4 X2L 4 X3L 4
0 1 2 3
M(t) = E[e'*] = E[X"5% + EX'NYS + EXAL + EXPlL +
M) = 0 + EX' + EX?%Y% + EX%L +
M) = 0 + 0 + E[X? + E[X%L +
2 k
EM(t)|,_, = E[X]| | £=M(t) _ = EBlX7] A= M(t) _, = BlXT]




mgt examples

An example:
MGF of normal(p,0?) is exp(Ut+02t?/2)
Two key properties:
I. MGF of sum independent r.v.s is product of MGFs:
Mx+y(t) = E[e®**V)] = E[e™ "] = E[e™X] E[e*"] = Mx(t) My(t)

2. Invertibility: MGF uniquely determines the
distribution.

e.g.: Mx(t) = exp(at+bt?),with b>0, then X ~ Normal(a,2b)
Important example: sum of indep normals is normal:
X~Normal(J1,01%) Y~Normal([2,02?)
Mx+v(t) = exp(Mit + O1%t%/2) * exp(Mat + 02%t%/2)
= exp[(Mi+H2)t + (O12+022)t%/2]




“laws of large numbers?”

i.i.d. (independent, identically distributed) random vars
X, Xy X5, ...
X. has 4 = E[X] < 00 and 02 =Var[X]

E[> ", Xi] = nu and Var[> ., Xi] = no?

So limits as n— 00 don’t exist (except in the degenerate case
where 4 = 02 = 0).




weak law of large numbers

i.i.d. (independent, identically distributed) random vars
Xp Xy Xy, ...
X. has 4 = E[X] < o and 02 =Var[X]

1<
Consider the empirical/sample mean: X — — Z X;
n

—
The Weak Law of Large Numbers: Z

Forany € > 0,as n = o

Pr(|X — p| >¢€) — 0.




weak law of large numbers

Forany € > 0,as n = o
Pr(|X — u| >¢€) — 0.
Proof: (assume 02 < )

BX] = B[*572] =

n

Var[X| = Var[X1totXn] = o

n n

By Chebyshev inequality,

engans 2

Pr(| X —ul>¢€) <2 > 0

— mne2




sttong law of large numbers

i.i.d. (independent, identically distributed) random vars

X, X Xs ... ¥ _ EZX'
T (/
X, has P = E[X] < o0 i=1

X1+---+ X,
Pr(lim( L )z,u):
nN—r 00 T

Strong Law = Weak Law (but not vice versa)

Strong law implies that for any € > 0, there are only finite
number of n satisfying the weak law condition | X — ;| > ¢




sample mean — population mean
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the law of large numberts

Note: D, = E[ | 21<i<n(Xi-M) | ] grows with n, but Dn/n = 0

Justifies the “frequency” interpretation of probability

but not “‘Regression toward the mean”

and not gambler’s fallacy: “I’'m due for a win!”
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normal random variable

X is a normal random variable X ~ N(u,0?)

1 2/~ 2
— —(z—p)</20
f(x) ot

EX]=u Var[X]| =02
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the central limit theorem (CLT)

i.i.d. (independent, identically distributed) random vars

X, X0 X ...

X has Y = E[X] and 02 =Var[X]

Asn — o0,

Restated: As h — o0,

X1+Xo4--+X,,—npu .
b s N(0,1)
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CLT in the real world

CLT is the reason many things appear normally distributed
Many quantities = sums of (roughly) independent random vars

Exam scores: sums of individual problems

People’s heights: sum of many genetic & environmental factors
Measurements: sums of various small instrument errors

20




in the real world...

25
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Human height is -
QL -
approximately normal. “‘ -
>N — —
c 0 _|
q) -
o LT -
Why might that be 2 o _ ) T H |
true! o b
n —
R.A. Fisher (1918) T rnl
noted it would follow 64 66 68 70 72 74 76 78

from CLT if height
were the sum of
many independent random effects, e.g. many genetic factors (plus
some environmental ones like diet). l.e., suggested part of mechanism
by looking at shape of the curve.
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summary

Distribution of X +Y: summations, integrals (or MGF)
Distribution of X +Y # distribution X orY in general

Distribution of X +Y is normal if X andY are normal (ditto for a
few other special distributions)

Sums generally don’t “converge,’ but averages do:
Weak Law of Large Numbers

Strong Law of Large Numbers

Most surprisingly, averages all converge to the same distribution:

the Central Limit Theorem says sample mean — normal
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