
Final Review
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general

Coverage–comprehensive, slight post-midterm emphasis
B&T ch 1-3,5,9, continuous, limits, hypothesis testing, mle, em. 
              Intro algorithms (especially DPV chap 6)

everything in slides, hw, daily problems.

Mechanics
closed book, aside from one page of notes (8.5 x 11, both sides, handwritten)

Format–similar to midterm: 
T/F,  short problems, one or two slightly longer.
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what to expect
 on the final in

 more detail
...       .
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chapter 1: combinatorial analysis

counting principle (product rule)
permutations
combinations
binomial coefficients
binomial theorem
inclusion/exclusion

pigeon hole principle
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chapter 1: axioms of  probability

sample spaces & events
axioms
complements, Venn diagrams, deMorgan, 
mutually exclusive events, etc.
equally likely outcomes
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chapter 1: conditional probability and independence

conditional probability
chain rule, aka multiplication rule
total probability theorem
bayes rule
independence
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chapter 2: random variables

discrete random variables
probability mass function (pmf)
expectation, variance of X
expectation of g(X) (i.e., a function of an r.v.)
linearity: expectation of X+Y and aX+b
conditional expectation, law of total expectation
cumulative distribution function (cdf)

cdf as sum of pmf from -∞

joint and marginal distributions
important examples:

bernoulli, binomial, poisson, geometric, uniform

7

know pmf, mean, variance of these



some important (discrete) distributions
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Name PMF E[k] E[k2] σ2
Ross

Bernoulli(p) f(k) =

�
1− p if k = 0
p if k = 1

p p p(1− p) p134

Binomial(p, n) f(k) =
�n
k

�
pk(1− p)n−k, k = 0, 1, . . . , N np np(1− p) p134

Poisson(λ) f(k) = e−λ λk

k! , k = 0, 1, . . . λ λ(λ+ 1) λ p143

Geometric(p) f(k) = p(1− p)k−1, k = 0, 1, . . . 1/p (2− p)/p2 (1− p)/p2 p155

Hypergeometric(n,N,m) f(k) =
(mk )(

N−m
n−k )

(Nn)
, k = 0, 1, . . . , N nm/N nm

N

�
(n−1)(m−1)

N−1 + 1
�

nm
N

�
(n−1)(m−1)

N−1 + 1− nm
N

�
p160

Name Density E[k] E[k2] σ2
Ross

Uniform(α,β) f(x) = 1/(β − α),α < x < β (α+ β)/2 (β − α)2/12 p194

Normal(µ,σ2
) f(x) = 1√

2πσ
e−((x−µ)/σ)2/2 µ σ2

p198

Exponential(λ) f(x) = λe−λx, x ≥ 0 1/λ 1/λ2
p208



chapter 3: continuous random variables

probability density function (pdf)
cdf as integral of pdf from -∞
expectation and variance
expectation of g(X)
conditional expectation
law of total expectation
important examples

uniform, normal (incl Φ, “standardization”), exponential
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know pdf and/or cdf, mean, variance of these



b&t chapter 5

tail bounds 
Markov
Chebyshev
Chernoff (lightly)

limit theorems 
weak/strong laws of large numbers
central limit theorem
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likelihood, parameter estimation, MLE (b&t 9.1)

likelihood
“likelihood” of observed data given a model
usually just a product of probabilities (independence assumption)
a function of (unknown?) parameters of the model

parameter estimation
if you know/assume the form of the model (e.g. normal, poisson,...), 
can you estimate the parameters based on observed data
many ways

maximum likelihood estimators
one way to do it–choose values of the parameters that maximize 
likelihood of observed data
method (usually) – solve 
       “derivative (wrt parameter/s) of (log) likelihood  = 0”
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expectation maximization (EM)

EM
iterative algorithm trying to find MLE in situations that are 
analytically intractable 
usual framework: there are 0/1 hidden variables (e.g. from which 
component was this datum sampled) & problem much easier if they 
were known
E-step: given rough parameter estimates, find expected values of 
hidden variables
M-step: given expected values of hidden variables, find (updated) 
parameter estimates to maximize likelihood
Algorithm: iterate above alternately until convergence
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hypothesis testing (b&t 9.3)

I have data, and 2 (or more) hypotheses about the 
process generating it.  Which hypothesis is (more likely 
to be) correct?

Again, a very rich literature on this.

One of the many approaches: the “Likelihood Ratio Test”

calculate:

ratio > 1 favors alternate,  < 1 favors null, etc.

(false rejection prob, false acceptance prob)
13

likelihood of data under alternate hypothesis
likelihood of data under null hypothesis



probability & statistics, broadly

noise, uncertainty & variability are pervasive
learning to model it, derive knowledge and compute 
despite it are critical 
Some of the important applications:
• cryptography
• simulation
• statistics via sampling
• machine learning
• systems and queueing theory
• data compression
• error-correcting codes
• randomized algorithms
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complexity summary

Big-O    	
 –  good

P          	
 –  good

Exp       	
 –  bad

Verification easy?  NP

NP-hard, NP-complete – bad (I bet)

To show NP-complete – reductions

NP-complete = hopeless? – no, but you need to lower your 
expectations: heuristics, approximations and/or small instances.
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NP!

P!

Exp!
Worse… 

NP-C 

Worse...



algorithms and complexity 

Decades of work on many computational problems has led to remarkable 
improvements in speed/memory/solution quality/etc.

Algorithmic progress dwarfs Moore’s law in many cases

Some broadly applicable generic approaches like “greedy”, “divide and 
conquer” and “dynamic programming” have emerged

“Polynomial time”: good 1st approx to “feasibly computable”; scales nicely

Unfortunately, for many problems no polynomial time algorithm is known, 
we are not able to routinely solve large, arbitrary instances, and progress 
on doing so has been slow and erratic.

Most such problems are NP-hard; many are NP-complete (a subset)

Key characteristics of NP problems:

searching for a “solution” among exponentially many possibilities

each solution can be described by polynomially many bits

a potential solution can be verified in polynomial time

Key technique: reduction
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want more? 

Stat 390/1 probability & statistics
CSE 421 algorithms
CSE 431 computability and complexity
CSE 427/8 computational biology
CSE 440/1 human/computer interaction
CSE 446 machine learning
CSE 473 artificial intelligence

and others!

(If you’re really motivated and up for a significant challenge, next spring I’m teaching a 
graduate course on randomized algorithms and probabilistic analysis :)
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Thanks and Good Luck!
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