Final Review

Coverage-comprehensive, slight post-midterm emphasis
B\&T ch I-3,5,9, continuous, limits, hypothesis testing, mle, em.
Intro algorithms (especially DPV chap 6)
everything in slides, hw, daily problems.

Mechanics
closed book, aside from one page of notes ($8.5 \times \mathrm{II}$, both sides, handwritten)

Format-similar to midterm:
T/F, short problems, one or two slightly longer.

what to expect on the final in more detail

counting principle (product rule)
permutations
combinations
binomial coefficients
binomial theorem
inclusion/exclusion
pigeon hole principle
sample spaces \& events axioms
complements, Venn diagrams, deMorgan, mutually exclusive events, etc.
equally likely outcomes

conditional probability

chain rule, aka multiplication rule
total probability theorem
bayes rule
independence
discrete random variables
probability mass function (pmf) expectation, variance of X expectation of $g(X)$ (i.e., a function of an r.v.)
linearity: expectation of $X+Y$ and $a X+b$
conditional expectation, law of total expectation
cumulative distribution function (cdf)
cdf as sum of pmf from - $-\infty$
joint and marginal distributions
important examples:
bernoulli, binomial, poisson, geometric, uniform

some important (discrete) distributions

Name	$P M F$	$E[k]$	$E\left[k^{2}\right]$	σ^{2}
$\operatorname{Bernoulli}(p)$	$f(k)=\left\{\begin{array}{lll}1-p & \text { if } k=0 & p \\ p & \text { if } k=1\end{array}\right.$	p	$p(1-p)$	
$\operatorname{Binomial}(p, n)$	$f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, N$	$n p$	$n p(1-p)$	
Poisson (λ)	$f(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1, \ldots$	λ	$\lambda(\lambda+1)$	λ
$\operatorname{Geometric}(p)$	$f(k)=p(1-p)^{k-1}, k=0,1, \ldots$	$1 / p$	$(2-p) / p^{2}$	$(1-p) / p^{2}$
Hypergeometric (n, N, m)	$f(k)=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}, k=0,1, \ldots, N$	$n m / N$	$\frac{n m}{N}\left(\frac{(n-1)(m-1)}{N-1}+1\right)$	$\frac{n m}{N}\left(\frac{(n-1)(m-1)}{N-1}+1-\frac{n m}{N}\right)$

probability density function (pdf)
cdf as integral of pdf from $-\infty$
expectation and variance
expectation of $g(X)$
conditional expectation
law of total expectation important examples
uniform, normal (incl Φ, "standardization"), exponential
know pdf and/or cdf, mean, variance of these

tail bounds

Markov
Chebyshev
Chernoff (lightly)
limit theorems
weak/strong laws of large numbers
central limit theorem

likelihood, parameter estimation, MLE (b\&t 9.1)

likelihood

"likelihood" of observed data given a model
usually just a product of probabilities (independence assumption)
a function of (unknown?) parameters of the model

parameter estimation

if you know/assume the form of the model (e.g. normal, poisson,...), can you estimate the parameters based on observed data many ways
maximum likelihood estimators
one way to do it-choose values of the parameters that maximize likelihood of observed data
method (usually) - solve
"derivative (wrt parameter/s) of (log) likelihood = 0"

expectation maximization (EM)

EM

iterative algorithm trying to find MLE in situations that are analytically intractable
usual framework: there are 0/1 hidden variables (e.g. from which component was this datum sampled) \& problem much easier if they were known
E-step: given rough parameter estimates, find expected values of hidden variables
M-step: given expected values of hidden variables, find (updated) parameter estimates to maximize likelihood
Algorithm: iterate above alternately until convergence

I have data, and 2 (or more) hypotheses about the process generating it. Which hypothesis is (more likely to be) correct?

Again, a very rich literature on this.

One of the many approaches: the "Likelihood Ratio Test" calculate: $\frac{\text { likelihood of data under alternate hypothesis }}{\text { likelihood of data under null hypothesis }}$ ratio > 1 favors alternate, < 1 favors null, etc.
(false rejection prob, false acceptance prob)
noise, uncertainty \& variability are pervasive
learning to model it, derive knowledge and compute despite it are critical

Some of the important applications:

- cryptography
- simulation
- statistics via sampling
- machine learning
- systems and queueing theory
- data compression
- error-correcting codes
- randomized algorithms

$$
\begin{array}{ll}
\text { Big-O } & - \text { good } \\
\text { P } & - \text { good } \\
\text { Exp } & - \text { bad } \\
\text { Verification easy? NP }
\end{array}
$$

NP-hard, NP-complete - bad (I bet)
To show NP-complete - reductions

NP-complete = hopeless? - no, but you need to lower your expectations: heuristics, approximations and/or small instances.

algorithms and complexity

Decades of work on many computational problems has led to remarkable improvements in speed/memory/solution quality/etc.
Algorithmic progress dwarfs Moore's law in many cases
Some broadly applicable generic approaches like "greedy", "divide and conquer" and "dynamic programming" have emerged
"Polynomial time": good Ist approx to "feasibly computable"; scales nicely
Unfortunately, for many problems no polynomial time algorithm is known, we are not able to routinely solve large, arbitrary instances, and progress on doing so has been slow and erratic.
Most such problems are NP-hard; many are NP-complete (a subset)
Key characteristics of NP problems:
searching for a "solution" among exponentially many possibilities each solution can be described by polynomially many bits a potential solution can be verified in polynomial time
Key technique: reduction

Stat 390/1 probability \& statistics
 CSE 421 algorithms
 CSE 431 computability and complexity
 CSE 427/8 computational biology
 CSE 440/1 human/computer interaction
 CSE 446 machine learning
 CSE 473 artificial intelligence

and others!
(If you're really motivated and up for a significant challenge, next spring l'm teaching a graduate course on randomized algorithms and probabilistic analysis:)

Thanks and Good Luck!

