Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

- Job j starts at s_j and finishes at f_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- What order?
- Does that give best answer?
- Why or why not?
- Does it help to be greedy about order?

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of start time s_i.

[Earliest finish time] Consider jobs in ascending order of finish time f_i.

[Shortest interval] Consider jobs in ascending order of interval length $f_j - s_j$.

[Fewest conflicts] For each job, count the number of conflicting jobs c_j . Schedule in ascending order of conflicts c_i .

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f_1 \le f_2 \le \ldots \le f_n.

\checkmark^{jobs \ selected}

A \leftarrow \phi

for j = 1 to n {

    if (job j compatible with A)

        A \leftarrow A \cup \{j\}

}

return A
```

Implementation. O(n log n).

- Remember job j* that was added last to A.
- Job j is compatible with A if $s_j \ge f_{j^*}$.

Interval Scheduling: Correctness

Theorem. Greedy algorithm is optimal.

Pf. ("greedy stays ahead")

Let $i_1, i_2, ..., i_k$ be jobs picked by greedy, $j_1, j_2, ..., j_m$ those in some optimal solution Show $f(i_r) \le f(j_r)$ by induction on r.

Basis: i_1 chosen to have min finish time, so $f(i_1) \le f(j_1)$

Ind: $f(i_r) \le f(j_r) \le s(j_{r+1})$, so j_{r+1} is among the candidates considered by greedy when it picked i_{r+1} , & it picks min finish, so $f(i_{r+1}) \le f(j_{r+1})$

Similarly, $k \ge m$, else j_{k+1} is among (nonempty) set of candidates for i_{k+1}

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_j , finishes at f_j , and has weight or value v_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le \ldots \le f_n$. Def. p(j) = largest index i < j such that job i is compatible with j.

Dynamic Programming

One of the algorithmic sledgehammers

High level idea:

 Find a recurrence for the optimal solution in terms of optimal solutions to subproblems of the same type.

Build up solutions to these subproblems in order of increasing size.

Dynamic Programming: Binary Choice

Notation. OPT(j) = value (weight) of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

optimal substructure

- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ v_j + OPT(p(j)), OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

Weighted Interval Scheduling: Brute Force

Leads to recursive algorithm.

```
Input: n, s_1, \dots, s_n, f_1, \dots, f_n, v_1, \dots, v_n
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.
Compute p(1), p(2), ..., p(n)
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max(v<sub>j</sub> + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming: compute solutions in order of "smallest" to "largest".

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(v_j + M[p(j)], M[j-1])
}
```

Claim: M[j] is value of optimal solution for jobs 1..j Timing: Easy. Main loop is O(n); sorting is $O(n \log n)$

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le \ldots \le f_n$. Def. p(j) = largest index i < j such that job i is compatible with j.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming: compute solutions in order of "smallest" to "largest".

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(v_j + M[p(j)], M[j-1])
}
```

Claim: M[j] is value of optimal solution for jobs 1..j Timing: Easy. Main loop is O(n); sorting is $O(n \log n)$ Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?

A. Do some post-processing - "traceback"

• # of recursive calls $\leq n \Rightarrow O(n)$.

Algorithmic Paradigms

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Key properties needed for it to work:

- only polynomially many subproblems

- solution to original problem can be easily computed from solutions to subproblems.

- there is a natural ordering on subproblems from "smallest" to "largest" together with easy-to-compute recurrence that allows us to compute optimal solution to a subproblem in terms of optimal solutions to smaller subproblems.