
1

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve
each sub-problem independently, and combine solution to sub-problems
to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Interval Scheduling

3

Interval Scheduling

Interval scheduling.
  Job j starts at sj and finishes at fj.
  Two jobs compatible if they don’t overlap.
  Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

4

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

  What order?
  Does that give best answer?
  Why or why not?
  Does it help to be greedy about order?

5

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of start time sj.

[Earliest finish time] Consider jobs in ascending order of finish time fj.

[Shortest interval] Consider jobs in ascending order of interval length
fj - sj.

[Fewest conflicts] For each job, count the number of conflicting jobs cj.
Schedule in ascending order of conflicts cj.

6

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it’s compatible with the ones already taken.

Implementation. O(n log n).
  Remember job j* that was added last to A.
  Job j is compatible with A if sj ≥ fj*.

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

A ← φ
for j = 1 to n {
 if (job j compatible with A)
 A ← A ∪ {j}
}
return A

jobs selected

Interval Scheduling: Greedy Algorithm

7

Interval Scheduling

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11

8

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

9

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

10

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B A

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

11

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

12

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E D

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

13

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

14

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

15

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

16

Interval Scheduling: Correctness	

Theorem. Greedy algorithm is optimal.	

Pf. (“greedy stays ahead”)	

Let i1, i2, ... ik be jobs picked by greedy, j1, j2, ... jm those in some optimal solution 	

Show f(ir) ≤ f(jr) by induction on r. ���

Basis: i1 chosen to have min finish time, so f(i1) ≤ f(j1) ���
Ind: f(ir) ≤ f(jr) ≤ s(jr+1), so jr+1 is among the candidates considered by greedy
when it picked ir+1, & it picks min finish, so f(ir+1) ≤ f(jr+1)	

Similarly, k ≥ m, else jk+1 is among (nonempty) set of candidates for ik+1	

j1	
 j2	
 jr	

i1	
 i1	
 ir	
 ir+1	

. . .	

Greedy:	

OPT:	
 jr+1	

job jr+1 starts after ir ends,
so included in min(…)	

6.1 Weighted Interval Scheduling

18

Weighted Interval Scheduling

Weighted interval scheduling problem.
  Job j starts at sj, finishes at fj, and has weight or value vj .
  Two jobs compatible if they don't overlap.
  Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

19

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
  Consider jobs in ascending order of finish time.
  Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by
finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a1 a1 a1 a1 a1 a1 a1 a1 a1

by
weight

20

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

5	
8	

3	
7	

2	
6	

0	
5	

1	
4	

0	
3	

0	
2	

0	
1	

-	
0	

p(j)	
j	

21

Dynamic Programming

One of the algorithmic sledgehammers

High level idea:

  Find a recurrence for the optimal solution in terms of optimal
solutions to subproblems of the same type.

  Build up solutions to these subproblems in order of increasing size.

22

Dynamic Programming: Binary Choice

Notation. OPT(j) = value (weight) of optimal solution to the problem
consisting of job requests 1, 2, ..., j.

  Case 1: OPT selects job j.
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

  Case 2: OPT does not select job j.
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise
⎧
⎨
⎩

optimal substructure

23

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Leads to recursive algorithm.

24

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

3
4

5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

25

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming: compute solutions in order of
“smallest” to “largest”.

Claim: M[j] is value of optimal solution for jobs 1..j
Timing: Easy. Main loop is O(n); sorting is O(n log n)

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
}

Output M[n]

26

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

5	
8	

3	
7	

2	
6	

0	
5	

1	
4	

0	
3	

0	
2	

0	
1	

0-	
-0	

optj	
pj	
vj	
j	

27

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming: compute solutions in order of
“smallest” to “largest”.

Claim: M[j] is value of optimal solution for jobs 1..j
Timing: Easy. Main loop is O(n); sorting is O(n log n)

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
}

Output M[n]

28

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing – “traceback”

  # of recursive calls ≤ n ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (vj + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

the condition
determining the
max when
computing M[]

the relevant
sub-problem

29

Algorithmic Paradigms

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Key properties needed for it to work:

–  only polynomially many subproblems

–  solution to original problem can be easily computed from solutions
to subproblems.

–  there is a natural ordering on subproblems from “smallest” to
“largest” together with easy-to-compute recurrence that allows us
to compute optimal solution to a subproblem in terms of optimal
solutions to smaller subproblems.

