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Algorithmic Paradigms 

Greed.  Build up a solution incrementally, myopically optimizing some 
local criterion. 

Divide-and-conquer.  Break up a problem into two sub-problems, solve 
each sub-problem independently, and combine solution to sub-problems 
to form solution to original problem.  

Dynamic programming.  Break up a problem into a series of overlapping 
sub-problems, and build up solutions to larger and larger sub-problems. 



Interval Scheduling 
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Interval Scheduling 

Interval scheduling. 
  Job j starts at sj and finishes at fj. 
  Two jobs compatible if they don’t overlap. 
  Goal: find maximum subset of mutually compatible jobs. 
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some order. Take each job provided 
it's compatible with the ones already taken. 

  What order?   
  Does that give best answer?   
  Why or why not?   
  Does it help to be greedy about order?  
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some order. Take each job provided 
it's compatible with the ones already taken. 

[Earliest start time]  Consider jobs in ascending order of start time sj. 

[Earliest finish time]  Consider jobs in ascending order of finish time fj. 

[Shortest interval]  Consider jobs in ascending order of interval length  
fj - sj. 

[Fewest conflicts]  For each job, count the number of conflicting jobs cj. 
Schedule in ascending order of conflicts cj. 
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Greedy algorithm.  Consider jobs in increasing order of finish time. 
Take each job provided it’s compatible with the ones already taken. 

Implementation.  O(n log n). 
  Remember job j* that was added last to A. 
  Job j is compatible with A if sj ≥ fj*. 

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 

A ← φ 
for j = 1 to n { 
   if (job j compatible with A) 
      A ← A ∪ {j} 
} 
return A   

jobs selected  

Interval Scheduling:  Greedy Algorithm 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling:  Correctness	


Theorem.  Greedy algorithm is optimal.	


Pf.  (“greedy stays ahead”)	

Let i1, i2, ... ik be jobs picked by greedy,  j1, j2, ... jm  those in some optimal solution 	

Show f(ir) ≤ f(jr) by induction on r. ���

Basis: i1 chosen to have min finish time, so f(i1) ≤ f(j1) ���
Ind: f(ir) ≤ f(jr) ≤ s(jr+1), so  jr+1 is among the candidates considered by greedy 
when it picked ir+1, & it picks min finish, so f(ir+1) ≤ f(jr+1)	


Similarly, k ≥ m, else jk+1 is among (nonempty) set of candidates for ik+1	


j1	
 j2	
 jr	


i1	
 i1	
 ir	
 ir+1	


. . .	


Greedy:	


OPT:	
 jr+1	


job jr+1 starts after ir ends, 
so included in min(…)	




6.1  Weighted Interval Scheduling 
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Weighted Interval Scheduling 

Weighted interval scheduling problem. 
  Job j starts at sj, finishes at fj, and has weight or value vj .  
  Two jobs compatible if they don't overlap. 
  Goal:  find maximum weight subset of mutually compatible jobs. 
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Unweighted Interval Scheduling Review 

Recall.  Greedy algorithm works if all weights are 1. 
  Consider jobs in ascending order of finish time. 
  Add job to subset if it is compatible with previously chosen jobs. 

Observation.  Greedy algorithm can fail spectacularly if arbitrary 
weights are allowed. 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 

Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 
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Dynamic Programming 

One of the algorithmic sledgehammers 

High level idea: 

   Find a recurrence for the optimal solution in terms of optimal 
solutions to subproblems of the same type. 

  Build up solutions to these subproblems in order of increasing size. 
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Dynamic Programming:  Binary Choice 

Notation.  OPT(j) = value (weight) of optimal solution to the problem 
consisting of job requests 1, 2, ..., j. 

  Case 1:  OPT selects job j. 
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j) 

  Case 2:  OPT does not select job j. 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1 

  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
⎧ 
⎨ 
⎩ 

optimal substructure 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 

Compute p(1), p(2), …, p(n) 

Compute-Opt(j) { 
   if (j = 0) 
      return 0 
   else 
      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1)) 
} 

Weighted Interval Scheduling:  Brute Force 

Leads to recursive algorithm. 
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Weighted Interval Scheduling:  Brute Force 

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems  ⇒  exponential algorithms.  

Ex.  Number of recursive calls for family of "layered" instances grows 
like Fibonacci sequence. 
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Weighted Interval Scheduling:  Bottom-Up 

Bottom-up dynamic programming: compute solutions in order of 
“smallest” to “largest”. 

Claim: M[j] is value of optimal solution for jobs 1..j 
Timing: Easy.  Main loop is O(n); sorting is O(n log n) 

Input: n, s1,…,sn , f1,…,fn , v1,…,vn 

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 

Compute p(1), p(2), …, p(n) 

Iterative-Compute-Opt { 
   M[0] = 0 
   for j = 1 to n 
      M[j] = max(vj + M[p(j)], M[j-1]) 
} 

Output M[n] 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 

Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 
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Weighted Interval Scheduling:  Bottom-Up 

Bottom-up dynamic programming: compute solutions in order of 
“smallest” to “largest”. 

Claim: M[j] is value of optimal solution for jobs 1..j 
Timing: Easy.  Main loop is O(n); sorting is O(n log n) 

Input: n, s1,…,sn , f1,…,fn , v1,…,vn 

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 

Compute p(1), p(2), …, p(n) 

Iterative-Compute-Opt { 
   M[0] = 0 
   for j = 1 to n 
      M[j] = max(vj + M[p(j)], M[j-1]) 
} 

Output M[n] 
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Weighted Interval Scheduling:  Finding a Solution 

Q.  Dynamic programming algorithms computes optimal value.  What if 
we want the solution itself? 
A.  Do some post-processing – “traceback” 

  # of recursive calls ≤ n  ⇒  O(n). 

Run M-Compute-Opt(n) 
Run Find-Solution(n) 

Find-Solution(j) { 
   if (j = 0) 
      output nothing 
   else if (vj + M[p(j)] > M[j-1]) 
      print j 
      Find-Solution(p(j)) 
   else 
      Find-Solution(j-1) 
} 

the condition 
determining the 
max when 
computing M[ ] 

the relevant 
sub-problem 
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Algorithmic Paradigms 

Dynamic programming.  Break up a problem into a series of overlapping 
sub-problems, and build up solutions to larger and larger sub-problems. 

Key properties needed for it to work: 

–  only polynomially many subproblems 

–  solution to original problem can be easily computed from solutions 
to subproblems. 

–  there is a natural ordering on subproblems from “smallest” to 
“largest” together with easy-to-compute recurrence that allows us 
to compute optimal solution to a subproblem in terms of optimal 
solutions to smaller subproblems. 


