The cosmology of computational problems

Slides by Avi Wigderson

SURVEY

Finding an efficient method to solve SuDoku puzzles is:

		8	6					
							6	
			4	8			2	3 8
		5		9				8
	4	9				2	1	
2				4		2 7		
2 3	6			2	9			
	1							
					5	1		

1: A waste of time

- 2: A decent way to pass some time
- 3: A fundamental problem of science and math

Algorithms

Function: input \rightarrow output Addition: x,y \rightarrow x+y

ALGORITHM (intuitive def): Step-by-step, simple procedure, computing a function on *all* inputs

ALGORITHM (Formal def): Turing machines

Algorithmic solvability Function: input \rightarrow output.

Unsolvable: no algorithm halts on all inputs equation \rightarrow are there integer solutions ? computer program \rightarrow is it buggy ?

Solvable: there is a finite algorithm $x,y \rightarrow x+y$ game \rightarrow does white have a winning strategy ?

Computational Complexity

I'm late

Time complexity I

Depends on the implementation? **Technology vs Algorithm** Moore's "law": density and speed doubles every 18 months Impossibility of exponential growth Axiom: transistor \geq atom speed \leq speed of light Time = number of basic steps Technology-independent def

Time complexity II Asymptotic complexity (of an algorithm)

How does the number of steps of an algorithm increases with the data size (input length) ?

Rubik's cube

....

Sudoku

		8	6					
							6	
			4	8			6 2	3 8
		5		9				8
	4	9				2 7	1	
2				4		7		
2 3	6			2	9			
	1							
					5	1		

1			2	3	4			12		6				7	
		8				7			3			9	10	6	11
	12			10			1		13		11			14	
3			15	2			14				9			12	
13				8			10		12	2		1	15		
	11	7	6				16				15			5	13
			10		5	15			4		8			11	
16			5	9	12			1						8	
	2						13			12	5	8			3
	13			15		3			14	8		16			
5	8			1				2				13	9	15	
		12	4		6	16		13			7				5
	3			12				6			4	11			16
	7			16		5		14			1			2	
11	1	15	9			13			2				14		
	14				11		2			13	3	5			12

	У				b		а	с	х	n			h			t		f	I			d	е	
	t		s	u	j	h	V				d	q	С			0	k		b	n		а	w	р
w	h	е	m	а	n		Ι	u	k	р		r	У		s	х	d	q	с	0	j		i	b
b		j		р	s			t				i	m		V	n	g	h	а	q		r	x	У
х	0	Ι	d		i	р			r	e			f		u	j	w	У	m		h		s	С
	w	q	u	j			i		e		х	b	0	ш	а			n	h	k	с	s		
n	с				w	х	u	s	f		q		I			е	m	k	V				j	а
а	i		х	f	с	T			m		V	k	w		q			j		d	g		b	h
s			V		h	k	р	0	b	u	f	j	n				t		d	i	m		r	q
	b	d		m	r	V			j		h	р			0	g	у	w			t		u	
у	р		е	Τ	а	m		V	h	0	b		х	i	t	s	q	u	w	g	r	с	d	k
	q	g	j		е		s	r		h	с				f	k			x		У	I	а	0
		u	t	k		n	0		1		r	m	q	У		b	а	V	j		i	р	h	
	x	r		w	р		У	k	i		I.	е	j					m		t	q	V		u
	s		n	b	q	с		g	w	k	а	u	t	р	У		0		r	x		j	m	
j	n	s	q	<	х	у	h		r	t	р	0	g	-	m		f	d			w	i	k	r
u		w	b	t	I	е	r	р	0	m		с	d	f	k	V					s	q		
d			h		m	S	с	f		q	j		k	n	g	w		b		1	V	u		е
			0	е	d	i	k	n	q		w		u		j	а	1			h		b	р	m
Ι	k				V	j	t	w		а	s	h					u	r	q	С	d	f		n
			g	d	У	r	w			U		I	i		n	р	V	а	f	е			q	
	V	x	р	0		t	b			d	n	f			w			g		s	а	h	У	i
i		k	w	С	g	q	x	h					а	u	I	d	е		s			m	f	V
		а	У	r		d	f	е	n	x	k		s	h			b		u		р			
q	1		f	s			m	i	V			w			h		х	t	у				с	d

5

.....

Asyr Com				1	1	1						
tt disite	gits # steps				1	2	3	4	5			
# digits					6	7	8	9				
	Hindu				1	9	1	3	4			
1	<mark>6</mark> ∙1											
5	6 ∙5											
10	<mark>6</mark> ∙10		Addition: Hindu algorithm									
100 N	6·100 6·N		Set i:=0, C:=0 While X[i] and Y[i] nonempty W := X[i] + Y[i] + C If W>9 then Z[i]:= W-10, C:=1 else Z[i]:= W, C:=0 i := i+1 endWhile									
Ν	~N											

Hindu: optimal - "It was the best of Adultion: Greek: terrible -"it was the worst of Greek algorithm

Complexity of a function = Complexity of its best algorithm While Y>0 Y:=Y-1 X:=X+1 endWhileh

Trivia: power of decimals

10⁸⁰ - is a small number to write down
- is a large number to count to

Complexity of functions comp(add) $\frac{1}{2}$ [gradeschool] $comp(multiply) \le n \cdot (log n)$ [schoenhage-strassen] **Is there no bette** Grade-school multiply algorithm Main challenges of The * * * * * * * * Only efficient algorithi n^2 Efficient: n, n·logn, n² * * * * * * Inefficient: 2^n , $2^{\sqrt{n}}$,... * * * * * * *

Efficient algorithms – Gems of computer science Drivers of invention & industry Who were

Edison ? Archimedes ? Guttenberg ? Bell ?

....

Dijkstra ? Tukey ? Berlekamp ? Knuth ?

Few gems: elegance, efficiency, utility

.

Shortest path Dijkstra 1959

MAPQUEST.

....

Network flows Internet routing Dynamic Programming

define Dijkstra(Graph G, Node s) $S := \{\}$ Q := Nodes(G)while not empty(Q) u := extractMin(Q) $S := S \cup u$ for each node v in neighbors(u) if d(u) + w(u,v) < d(v) then d(v) := d(u) + w(u,v)pi(v) := u

Distance (Cingman, Safford)Path(Cingman, Safford)

Pattern matching Knuth-Morris-Pratt Boyer-Moore 1977

Text processing Genome CELERA Molecular Biology Web search

Google

Text CAUCGCGCUUCGC Pattern CGC

algorithm kmp_search:

input: T (text), P (pattern sought)

define variables:

 $m \leftarrow 0, i \leftarrow 0, M$ (the table)

while m + i is less than length of T, do:

if P[i] = T[m + i], let $i \leftarrow i + 1$

if i = length of P then return m

otherwise, let $m \leftarrow m + i - M[i]$,

if $i \ge 0$ let $i \leftarrow M[i]$

Text CAUCGCGCUUCGCLocationXX

Fast Fourier Transform (FFT Cooley-Tukey 1965

Audio processing Image processing Tomography, MRI Fast multiplication Quantum algorithms

 $T(0), T(1), T(2), \dots T(N)$

Error correction Reed-Solomon decoding

Berlekamp-Massey 68

CDs DVDs Satellite communication Cell phone communication

INPUT: a binary sequence $S = S_0, S_1, S_2, \dots, S_n$. OUTPUT: the complexity L (S) of S, 0 < L (S) < N.

- 1. Initialization: C(D):=l, L:=O m:=-l, B{D):=l, N:=O.
- 2. While (N < n) do the following:
 - 2.1 Compute the next discrepancy d. $d:=(S_N + \Sigma c_i S_{N-i}) \mod 2.$

2.2 If d = 1 then do the following: T (D):=C (D), C (D):=C(D)+B(D)·D^{N-m}. If L < N/2 then L:=N+l-L, m:=N, B(B):=T (D).
2.3 N:=N+l.

3. Return(L) .

Cobham, Edmonds Rabin ~1965

The class P

All problems having an efficient algorithm to *find* solutions (the galaxy of problems closest to us)

Are all practically interesting problems in P?

	hree	proble	ms
	Input	• • • • • • • • • • • • • • • • • • •	Complexity
Factoring	1541	23 ×67	
integers	2 ⁶⁷ -1	193,707,721 × 761,83	8,257,287 ≤ 2√n

Provingn+"Riemannn symboltheoremsHypothesis"proof $\leq 2^n$

Solving Sudoku

		8	6					
							6	
			4	8			2	3
		5 9		9				3 8
	4	9				2 7	1	
2 3				4		7		
3	6			2	9			
	1							
					5	1		

9	2	8	6	1	3	4	5	7
4	7	3	9	5	2	8	6	1
1	5	6	4	8	7	9	2	3
7	3	5	2	9	1	6	4	8
6	4	9	7	3	8	2	1	5
2	8	1	5	4	6	7	3	9
3	6	7	1	2	9	5	8	4
5	1	2	8	7	4	3	9	6
8	9	4	3	6	5	1	7	2

 $\leq n^n$

What is common to all 3 problems?

-All look currently intractable, even for moderate n (best algorithms exponential)

- Specific instances get solved!

- Easy verification of given solutions !!!

Cook & Levin ~1971 The class NP

All problems having efficient verification algorithms of given solutions

For every such problem, finding a solution (of length n) takes $\leq 2^n$ steps: try all possible solutions & verify each.

Can we do better than "brute force" ? Do all NP problems have efficient algs ?

P versus NP

 P: Problems for which solutions can be efficiently *found* NP: Problems for which solutions can be efficiently *verified*

Fact: P ⊆ NP [finding implies verification] Conjecture: P ≠ NP [finding is much harder than verification]

"P=NP?" is a central question of math, science & technology !!!

what is in NP?

Mathematician: Given a statement, find a proof Scientist: Given data on some phenomena, find a theory explaining it. Engineer: Given constraints (size,weight,energy) find a design (bridge, medicine, phone)

In many intellectual challenges, *verifying* that we found a good solution is an easy task ! (if not, we probably wouldn't start looking)

If P=NP, these have fast, automatic *finder*

How do we tackle P vs. NP?

Break RSA, ruin E-commerce

Fame & glory \$6M from CLAY

Take out the fun of Doing these puzzles

Let's choose the SuDoku solver

Pick any *one* of the three problems. I'll solve it on each input instantly. Choose, oh Master!

The power of SuDoku I

Using SuDoku solver for Integer factoring

Both translators are efficient algorithms!

The power of SuDoku II Using SuDoku solver for Theorem proving

Both translators are efficient algorithms!

Universality: NP-completeness

SuDoku solver can solve any NP problem Cook-Levin '71: NP-complete problems exist! **SAT** is NP-complete. "Meta dictionary" to any NP problem. Another efficient algorithm gem. Karp '72: NP-complete problems abound! 21 problems in logic, optimization, algebra,... Today: ~3000 problems in all sciences, equivalent Yato '03 (MSc thesis): SuDoku is NP-complete

P=NP iff SuDoku has an efficient algorithm

Universality: NP-completeness

NP-complete problems: If one is easy, then all are! If one is hard, then all are!

SuDoku,NP-completeThm proving:NP-completeInteger factoring:we don't know

