The cosmology of computational problems

Slides by Avi Wigderson

SURVEY
Finding an efficient method to solve
SuDoku puzzles is:

		8	6					
							6	
			4	8			2	3
		5		9				8
	4	9				2	1	
2				4		7		
3	6			2	9			
	1							
					5	1		

1: A waste of time
2: A decent way to pass some time
3: A fundamental problem of science and math

Function: input \rightarrow output Addition: $\quad x, y \rightarrow x+y$

ALGORITHM (intuitive def):

Step-by-step, simple procedure, computing a function on all inputs

ALGORITHM (Formal def):

Turing machines

Algorithmic solvability

Function: input \rightarrow output.

Unsolvable: no algorithm halts on all inputs equation \rightarrow are there integer solutions ? computer program \rightarrow is it buggy?

Solvable: there is a finite algorithm
$x, y \rightarrow x+y$
game \rightarrow does white have a winning strategy?

Technology vs Algorithm Moore's "law": density and speed doubles every 18 months

> Impossibility of exponential growth

Axiom: transistor \geq atom

$$
\text { speed } \leq \text { speed of light }
$$

Time $=$ number of basic steps Technology-independent def

Time complexity II
Asymptotic complexity (of an algorithm)

How does the number of steps of an algorithm increases with the data size (input length)?
input

Rubik's cube

		8	6					
							6	
			4	8			2	3
		5		9				8
	4	9				2	1	
2				4		7		
3	6			2	9			
	1							
					5	1		

1			2	3	4			12		6				7	
		8				7			3			9	10	6	11
	12			10			1		13		11			14	
3			15	2			14				9			12	
13				8			10		12	2		1	15		
	11	7	6				16				15			5	13
			10		5	15			4		8			11	
16			5	9	12			1						8	
	2						13			12	5	8			3
	13			15		3			14	8		16			
5	8			1				2				13	9	15	
		12	4		6	16		13			7				5
	3			12				6			4	11			16
7			16		5		14			1			2		
11	15	9			13		2				14				
14			11		2			13	3	5			12		

Sudoku

	y				b		a	c	x	n			h			t		f	1			d	e	
	t		s	u	j	h	v				d	q	c			\bigcirc	k		b	n		a	w	p
w	h	e	m	a	n		I	u	k	p		r	y		s	x	d	q	c	\bigcirc	j		i	b
b		j		p	s			t				i	m		v	n	g	h	a	q		r	x	y
x	\bigcirc	1	d		i	p			r	e			f		u	j	w	y	m		h		s	c
	w	q	u	j			i		e		x	b	\bigcirc	m	a			n	h	k	c	s		
n	c				w	x	u	s	f		q		I			e	m	k	v				j	a
a	i		x	f	c	1			m		v	k	w		q			j		d	g		b	h
s			v		h	k	p	-	b	u	f	j	n				t		d	i	m		r	q
	b	d		m	r	v			J		h	p			0	g	y	w			t		u	
y	P		e	1	a	m		v	h	\bigcirc	b		x	i	t	s	q	u	w	g	r	c	d	k
	q	g	j		e		s	r		h	c				f	k			x		y	1	a	-
		u	t	k		n	-		1		r	m	q	y		b	a	v	j		i	p	h	
	x	r		w	p		y	k	i		1	e	j					m		t	q	v		u
	s		n	b	q	c		g	w	k	a	u	t	P	y		\bigcirc		r	x		j	m	
j	n	s	q	v	x	y	h		u	t	P	\bigcirc	g	1	m		f	d			w	i	k	r
u		w	b	t	I	e	r	p	\bigcirc	m		c	d	f	k	v					s	q		
d			h		m	s	C	f		q	j		k	n	g	w		b		1	v	u		e
			-	e	d	i	k	n	q		w		u		j	a	1			h		b	P	m
I	k				v	j	t	w		a	s	h					u	r	q	c	d	f		n
			g	d	y	r	w			c		I	i		n	p	V	a	f	e			q	
	v	x	p	\bigcirc		t	b			d	n	f			w			g		s	a	h	y	i
i		k	w	c	g	q	x	h					a	u	I	d	e		s			m	f	v
		a	y	r		d	f	e	n	x	k		s	h			b		u		p			
q	1		f	s			m	i	v			w			h		x	t	y				c	d

5

Comparing algorithms

\# digits
 \# steps

Hindu	Greek
$\sim N$	$\sim 10 \mathrm{~N}$

		1	2	3	4	6	
			6	7	8	8	

Hindu: optimal - "It was the best of Adurio:?:
Greek: terrible -"it was the worst of G: ent algorithm

Complexity of a function = Complexity of its best algorithm While $\mathrm{Y}>0$

$$
Y:=Y-1
$$

X:=X+1
endWhileh

Trivia: power of

$10^{80}=100$ 00
\approx number of atoms in the universe
10^{80} - is a small number to write down

- is a large number to count to
$10^{40}=100$

comp(add) $=n$
cuinip(mulniplon) $=n^{2} \quad$ [gnadecehnal! comp $($ multiply $) \leq n \cdot(\log n)$ [schoenhage-strassen]

Grade-school multip) y algorithm

> Main challenges of The

Only efficient algorithı

Efficient: n, $n \cdot \log n, n^{2}$ Inefficient: $2^{n}, 2^{\sqrt{n}}, \ldots$

$$
n^{2}\left\{\begin{array}{c}
* * * * * * * * \\
* * * * * * * * \\
* * * * * * * * \\
* * * * * * * * \\
* * * * * * * * \\
* * * * * * * \\
* * * * * * \\
* * * * * * *
\end{array}\right.
$$

Edison ?
Archimedes?
Guttenberg? Bell ?

Dijkstra?
Tukey?
Berlekamp?
Knuth ?
-•••••
......

Few gems: elegance, efficiency, utility

Dijkstra 1959

EMAPQUEST. $=$

Network flows

 Internet routing Dynamic Programming
define Dijkstra(Graph G, Node s)
S:= \{\}
Q := Nodes(G)
while not empty(Q)
$\mathrm{u}:=\operatorname{extractMin}(\mathrm{Q})$
$\mathbf{S}:=\mathbf{S} \cup \mathbf{u}$
for each node v in neighbors(u) if $\mathbf{d}(u)+\mathbf{w}(\mathbf{u}, \mathbf{v})<\mathbf{d}(v)$ then $\mathbf{d}(\mathbf{v}):=\mathbf{d}(\mathbf{u})+\mathbf{w}(\mathbf{u}, \mathbf{v})$ pi(v) :=u

Distance (Cingman, Safford)
Path (Cingman, Safford)

matching

Knuth-Morris-Pratt Boyer-Moore 1977

Text processing

Genome Xclera
Molecular Biology
Web search
Google

Text CAUCGCGCUUCGC

Location X X

$$
T(0), T(1), T(2), \ldots . . T(N)
$$

Cooley-Tukey 1965 Gauss 1805

RECURSIVE-FFT (a)

 \(n \leftarrow\) length \([a]\)
 if \(n=1\)
 then return \(a\)
 \(\omega_{n} \leftarrow e^{2 \pi i / n}\)
 \(\omega \leftarrow 1\)
 \(a^{[0]} \leftarrow\left(a_{0}, a_{2}, \ldots, a_{n-2}\right)\)
 \(a^{[1]} \leftarrow\left(a_{1}, a_{3}, \ldots, a_{n-1}\right)\)
 \(y^{[0]} \leftarrow\) RECURSIVE-FFT \(\left(a^{[0]}\right)\)
 \(y^{[1]} \leftarrow\) Recursive-FFT \(\left(a^{[1]}\right)\)
 for \(k \leftarrow 0\) to \(n / 2-1\)
 do \(y_{k} \leftarrow y_{k}^{[0]}+\omega y_{k}^{[1]}\)
 \(y_{k+(n / 2)} \leftarrow y_{k}^{10]}-\omega y_{k}^{[1]}\)
 \(\omega \leftarrow \omega \omega_{n}\)
 return \(y\)

Audio processing

Image processing Tomography, MRI Quantum algorithms

Berlekamp-Massey 68

CDs DVDs

Satellite communication

INPUT: a binary sequence $S=S_{0}, S_{1}, S_{2}, \ldots . S_{n}$. OUTPUT: the complexity $L(S)$ of $S, \quad 0<L(S)<N$.

1. Initialization: $\mathrm{C}(\mathrm{D}):=\mathrm{l}, \mathrm{L}:=\mathrm{O} \mathrm{m}:=-\mathrm{l}, \mathrm{B}\{\mathrm{D}):=\mathrm{l}, \mathrm{N}:=0$.
2. While ($\mathbf{N}<\mathbf{n}$) do the following:
2.1 Compute the next discrepancy d.

$$
d:=\left(S_{N}+\Sigma c_{i} S_{N-i}\right) \bmod 2 .
$$

2.2 If $\mathrm{d}=1$ then do the following:

$$
\text { T (D):=C (D), C (D):=C(D)+B(D).D. } \mathbf{D}^{\mathrm{N}-\mathrm{m}} .
$$

$$
\text { If } \mathrm{L}<\mathrm{N} / 2 \text { then } \mathrm{L}:=\mathrm{N}+\mathrm{l}-\mathrm{L}, \mathrm{~m}:=\mathrm{N}, \mathrm{~B}(\mathrm{~B}):=\mathrm{T}(\mathrm{D}) \text {. }
$$

$2.3 \mathrm{~N}:=\mathrm{N}+\mathrm{l}$.
3. Return(L) .

Cell phone communication

Cobham, Edmonds
Rabin ~1965

All problems having an efficient algorithm to find solutions
(the galaxy of problems closest to us)
Are all practically interesting problems in P ?

Three

problems

Input
 Output Complexity
 Factoring 1541 23×67 integers
 2^{67-1}
 $193,707,721 \times 761,838,257,287$
 $\leq 2^{\sqrt{n}}$

Proving $n+$ "Riemann
theorems Hypothesis"
n symbol proof $\leq 2^{n}$

Solving
Sudoku

		8	6					
							6	
			4	8			2	3
		5		9				8
	4	9				2	1	
2				4		7		
3	6			2	9			
	1							
					5	1		

9	2	8	6	1	3	4	5	7
4	7	3	9	5	2	8	6	1
1	5	6	4	8	7	9	2	3
7	3	5	2	9	1	6	4	8
6	4	9	7	3	8	2	1	5
2	8	1	5	4	6	7	3	9
3	6	7	1	2	9	5	8	4
5	1	2	8	7	4	3	9	6
8	9	4	3	6	5	1	7	2

$\leq n^{n}$

Proving $n+$ "Riemann n symbol theorems Hypothesis" proof $\leq 2^{n}$

$$
n=200 \text { pages }
$$

	Input	Output	Complexity
Factoring	1541	23×67	
integers	$267-1$	$? ?$	$\leq 2^{\sqrt{ } n}$

Factoring integers 267-1 ??
$\leq 2^{\sqrt{n}}$

I

ne
 Solving

$\leq n^{n}$

-All look currently intractable, even for moderate n (best algorithms exponential)

- Specific instances get solved!

Cook \& Levin ~1971

All problems having efficient verification algorithms of given solutions

For every such problem, finding a solution (of length n) takes $\leq 2^{n}$ steps: try all possible solutions \& verify each.

Can we do better than "brute force"? Do all NP problems have efficient algs?

P: Problems for which solutions can be efficiently found
NP: Problems for which solutions can be efficiently verified

Fact: $\quad P \subseteq N P$ [finding implies verification] Conjecture: $P \neq N P$ [finding is much harder than verification]
"P=NP?"

Mathematician: Given a statement, find a proof Scientist: Given data on some phenomena, find a theory explaining it.
Engineer: Given constraints (size, weight,energy) find a design (bridge, medicine, phone)

In many intellectual challenges, verifying that we found a good solution is an easy task !
(if not, we probably wouldn't start looking)
If $P=N P$, these have fast, automatic finder

Break RSA, ruin E-commerce

Fame \& glory $\$ 6 M$ from CLAY

Take out the fun of Doing these puzzles

Let's choose the SuDoku solver

	Input	Output	Complexity
Factoring	1541	23×67	
integers	$2^{67}-1$??	≤ 2

Proving $n+$ "Riemann n symbol theorems Hypothesis" proof $\leq 2^{n}$

Solving
SuDOWH

$\leq n^{n}$

Pick any one of the three problems.
I'll solve it on each input instantly.
Choose, oh Master!

The 00

Using SuDoku solver for Integer factoring

Input translator
Cook-Levin
Factoring \rightarrow SuDoku dictionary
Solution translator
$2^{67}-1$
$193707721 \times$ 761838257287

Both translators are efficient algorithms!

Using SuDoku solver for Theorem proving

Input translator
Cook-Levin
Thm proving
\rightarrow SuDoku dictionary
Solution translator

200+ Riemann Hypothesis

Definition...lemma Lemma...proof. .def... lemma...proof...QED

Both translators are efficient algorithms!

SuDoku solver can solve any NP problem Cook-Levin '71: NP-complete problems exist! SAT is NP-complete. "Meta dictionary" to any NP problem. Another efficient algorithm gem. Karp '72: NP-complete problems abound!
21 problems in logic, optimization, algebra,.. Today: ~3000 problems in all sciences, equivalent Yato '03 (MSc thesis): SuDoku is NP-complete

=NP iff SuDoku has an efficient algorithm

Universality: NP-completeness

-complete problems:
If one is easy, then all are!
If one is hard, then all are!

SuDoku,
NP-complete
Thm proving:
NP-complete
Integer factoring: we don't know

