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The cosmology of computational problems 



SURVEY 

Finding an efficient 
method to solve  
SuDoku puzzles is: 

1: A waste of time 
2: A decent way to pass some time 
3: A fundamental problem of science and math  



Algorithms 

Function: input  output 
Addition:   x,y  x+y 

ALGORITHM (intuitive def): 
Step-by-step, simple procedure,  
computing a function on all inputs 

ALGORITHM (Formal def): 
Turing machines 

 addition 
 algorithm  
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Algorithmic solvability 
Function: input  output.  

Unsolvable: no algorithm halts on all inputs 
equation  are there integer solutions ? 
computer program  is it buggy ? 

Solvable: there is a finite algorithm 
x,y  x+y 
game  does white have a winning strategy ? 



Computation is 
everywhere 

Solving 
Equations 

Debugging 
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Distances: time to solve problems 
Galaxies: complexity classes 
Bright stars: complete problems 

Computational Complexity 

WHEN? 

I’m late 



  Time complexity I 

Depends on the implementation? 
Technology vs Algorithm 
Moore’s “law”: density and speed 

doubles every 18 months 
Impossibility of exponential growth 
Axiom: transistor ≥ atom 
    speed ≤ speed of light 
Assume we reached this limit! 
Time = number of basic steps 
Technology-independent def 
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Time complexity II 
Asymptotic complexity 

(of an algorithm) 

How does the number of steps of an 
algorithm increases with the data 
size (input length) ? 

input input input input 



Rubik’s cube 

  2       3       4         5      … 



Sudoku 
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Addition: Hindu algorithm 

Set i:=0, C:=0 
While X[i] and Y[i] nonempty 
   W := X[i] + Y[i] + C 
   If W>9 then Z[i]:= W-10, C:=1 
             else   Z[i]:= W,      C:=0 
   i := i+1 
endWhile 

# digits    # steps 
          Hindu 
  1        6⋅1 
  5        6⋅5 
 10       6⋅10 
100      6⋅100 

  N       6⋅N 
  N       ~N 

Asymptotic  
Complexity 



 9  8  7  6 
 5  4  3  2  1           
 8 
 6 
 7 

# digits    # steps 
          Hindu  Greek 

  N       ~N    ~10N 

Addition:  
Greek algorithm 

While Y>0 
   Y:=Y-1 
   X:=X+1 
endWhileh 

Comparing  
algorithms 

Hindu: optimal - “It was the best of times” 
Greek: terrible -“it was the worst of times” 

Complexity of a function = 
Complexity of its best algorithm 



Trivia: power of decimals 
1080=10000000000000000000000000000000000000000 
         0000000000000000000000000000000000000000 
 ≈ number of atoms in the universe 

1080  - is a small number to write down  
       - is a large number to count to 

1040=10000000000000000000000000000000000000000 
 ≈ number of steps of the fastest  
       computer before the sun dies 



Complexity of functions 
comp(add)     = n          
comp(multiply) ≤ n2          [gradeschool]  
comp(multiply) ≤ n⋅(log n) [schoenhage-strassen]  
      Is there a  better algorithm? 
      Is there no better algorithm? 
Main challenges of Theoretical CS 
Only efficient algorithms get implemented 

Efficient: n, n⋅logn, n2, n3,.. (polynomial) 
Inefficient: 2n, 2√n,…         (exponential) 

Grade-school multiply algorithm 



  Efficient algorithms –   
Gems of computer science 

Drivers of invention & industry 
       Who were 
Edison ?                Dijkstra ? 
Archimedes ?          Tukey ? 
Guttenberg ?          Berlekamp ? 
Bell ?                   Knuth ? 
……                      …… 

Few gems: elegance, efficiency, utility 



Shortest path 
Dijkstra 1959 

Network flows 
Internet routing  
Dynamic Programming 
…… 

define Dijkstra(Graph G, Node s)  
             S := {}  
             Q := Nodes(G)  
             while not empty(Q)  
                  u := extractMin( Q )  
                  S := S ∪ u  
                  for each node v in neighbors( u )  
                       if d(u) + w(u,v) < d(v) then  
                       d(v) := d(u) + w(u,v) 
                       pi(v) := u  

Distance (Cingman, Safford) 
Path        (Cingman, Safford) 



Pattern matching 
Knuth-Morris-Pratt 
Boyer-Moore 1977 

Text processing 
Genome 
Molecular Biology 
Web search 

algorithm kmp_search: 

    input: T (text), P (pattern sought) 

    define variables: 

         m ← 0, i ← 0, M (the table)  

    while m + i is less than length of T, do: 

        if P[i] = T[m + i], let i ← i + 1 

            if i = length of P then return m 

        otherwise, let m ← m + i - M[i], 

            if i > 0  let  i ← M[i] 

Text CAUCGCGCUUCGC 
Pattern CGC 

Text CAUCGCGCUUCGC 
Location   X  X            X 



Fast Fourier 
Transform (FFT) 
Cooley-Tukey 1965 
Gauss          1805 

Audio processing 
Image processing 
Tomography, MRI 
Fast multiplication 
Quantum algorithms 

 T(0), T(1), T(2), ….T(N)   



Error correction 
Reed-Solomon decoding 
Berlekamp-Massey 68 

CDs   
DVDs 
Satellite communication 
Cell phone communication 

INPUT: a binary sequence S = SO,S1,S2,....Sn. 
OUTPUT: the complexity L (S) of S,   0< L (S) < N. 
1. Initialization: C(D):=l, L:=O m:=-l, B{D):=l, N:=O. 
2. While (N < n) do the following: 
    2.1 Compute the next discrepancy d. 
          d:= (SN

 + Σ ciSN-i) mod 2. 
    2.2 If d = 1 then do the following: 
          T (D):=C (D), C (D):=C(D)+B(D)⋅DN-m. 
          If L < N/2 then L:=N+l-L, m:=N, B(B):=T (D). 
    2.3 N:=N+l. 
3. Return(L) . 



           The class P 
All problems having an efficient 
algorithm to find solutions 
(the galaxy of problems closest to us) 

Are all practically interesting problems  
in P? 

Cobham, Edmonds 
Rabin    ~1965 



Three problems 
              Input     Output  Complexity 
Factoring    1541     23 ×67 
integers     267-1  193,707,721 × 761,838,257,287     ≤ 2√n 

Proving   n+”Riemann   n symbol 
theorems Hypothesis”   proof      ≤ 2n 

Solving  
Sudoku                               ≤ nn 



            Input     Output  Complexity 
Factoring  1541     23 ×67 
integers    267-1      ??          ≤ 2√n 

Proving   n+”Riemann   n symbol 
theorems Hypothesis”   proof      ≤ 2n 

Solving  
Sudoku                               ≤ nn 

What is common to all 3 problems? 
- All look currently intractable, even for 
moderate n (best algorithms exponential) 
-  Specific instances get solved! 
-  Easy verification of given solutions !!! 

Verification 
267-1 = 193707721 x 
          761838257287 

n+Poincare  n+Fermat’s  
Conjectute  “Theorem” 

   n = 200 pages 



        The class NP 
All problems having efficient verification 
algorithms of given solutions 

For every such problem, finding a 
solution (of length n) takes ≤ 2n steps: 
try all possible solutions & verify each. 

Can we do better than “brute force” ? 
Do all NP problems have efficient algs ? 

Cook & Levin  
 ~1971 



P versus NP 
P: Problems for which solutions can   
    be efficiently found 
NP: Problems for which solutions can 
    be efficiently verified 

Fact:        P ⊆ NP [finding implies verification]  
Conjecture: P ≠ NP [finding is much harder than 
                                                 verification] 

“P=NP?” is a central question of  
          math, science & technology !!! 



what is in NP? 
Mathematician: Given a statement, find a proof 
Scientist: Given data on some phenomena,  
            find a theory explaining it. 
Engineer: Given constraints (size,weight,energy) 
           find a design (bridge, medicine, phone) 

In many intellectual challenges, verifying that 
we found a good solution is an easy task ! 
(if not, we probably wouldn’t start looking) 

If P=NP, these have fast, automatic finder 



            Input     Output  Complexity 
Factoring  1541     23 ×67 
integers    267-1      ??           ≤ 2√n 

Proving   n+”Riemann   n symbol 
theorems Hypothesis”   proof      ≤ 2n 

Solving  
SuDoku                               ≤ nn 

How do we tackle P vs. NP?  
Break RSA,  
ruin E-commerce 

Pick any one of the 
three problems. 

I’ll solve it on each 
input  instantly. 

Choose, oh Master! 

Fame & glory 
$6M from CLAY 

Take out the fun of 
Doing these puzzles 

Let’s choose the 
SuDoku solver 



  The power of SuDoku I 

Using SuDoku solver for Integer factoring 

Both translators are efficient algorithms! 

 267-1 

       193707721 x 
   761838257287 

Input translator 

 Solution translator 

Cook-Levin  
Factoring→  
SuDoku 
dictionary 



 The power of SuDoku II 
Using SuDoku solver for Theorem proving 

Both translators are efficient algorithms! 

200+ Riemann 
     Hypothesis 

Definition…lemma       
Lemma…proof..def… 
lemma…proof…QED 

Input translator 

 Solution translator 

Cook-Levin  
Thm proving 
→ SuDoku 
dictionary 



SuDoku solver can solve any NP problem 
Cook-Levin ’71: NP-complete problems exist! 
  SAT is NP-complete. “Meta dictionary” to any 
  NP problem. Another efficient algorithm gem.  
Karp ’72: NP-complete problems abound! 
  21 problems in logic, optimization, algebra,.. 
Today: ~3000 problems in all sciences, equivalent 
Yato ’03 (MSc thesis): SuDoku is NP-complete 

P=NP iff SuDoku has an efficient algorithm 

Universality: NP-completeness  



NP-complete problems: 
If one is easy, then all are! 
If one is hard, then all are! 

SuDoku,             NP-complete 
Thm proving:        NP-complete 
Integer factoring:  we don’t know 

Universality: NP-completeness  
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everywhere 

US 
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