
Slides by Avi Wigderson

The cosmology of computational problems

SURVEY

Finding an efficient
method to solve
SuDoku puzzles is:

1: A waste of time
2: A decent way to pass some time
3: A fundamental problem of science and math

Algorithms

Function: input  output
Addition: x,y  x+y

ALGORITHM (intuitive def):
Step-by-step, simple procedure,
computing a function on all inputs

ALGORITHM (Formal def):
Turing machines

 addition
 algorithm

 12345
+ 6789

 19134

input

output

Algorithmic solvability
Function: input  output.

Unsolvable: no algorithm halts on all inputs
equation  are there integer solutions ?
computer program  is it buggy ?

Solvable: there is a finite algorithm
x,y  x+y
game  does white have a winning strategy ?

Computation is
everywhere

Solving
Equations

Debugging
Programs

Population
Dynamics

US

Shortest
Route

Unsolvable Solvable

Chess
Strategies

Integer
Addition

Solving
Sudoku

Distances: time to solve problems
Galaxies: complexity classes
Bright stars: complete problems

Computational Complexity

WHEN?

I’m late

 Time complexity I

Depends on the implementation?
Technology vs Algorithm
Moore’s “law”: density and speed

doubles every 18 months
Impossibility of exponential growth
Axiom: transistor ≥ atom
 speed ≤ speed of light
Assume we reached this limit!
Time = number of basic steps
Technology-independent def

 addition
 algorithm

 12345
+ 6789

 19134

input

output

Time complexity II
Asymptotic complexity

(of an algorithm)

How does the number of steps of an
algorithm increases with the data
size (input length) ?

input input input input

Rubik’s cube

 2 3 4 5 …

Sudoku

3 4

Sudoku

 5 ……

 9 8 7 6
 5 4 3 2 1

1

1

1

3

1

4 1 9

Addition: Hindu algorithm

Set i:=0, C:=0
While X[i] and Y[i] nonempty
 W := X[i] + Y[i] + C
 If W>9 then Z[i]:= W-10, C:=1
 else Z[i]:= W, C:=0
 i := i+1
endWhile

digits # steps
 Hindu
 1 6⋅1
 5 6⋅5
 10 6⋅10
100 6⋅100

 N 6⋅N
 N ~N

Asymptotic
Complexity

 9 8 7 6
 5 4 3 2 1
 8
 6
 7

digits # steps
 Hindu Greek

 N ~N ~10N

Addition:
Greek algorithm

While Y>0
 Y:=Y-1
 X:=X+1
endWhileh

Comparing
algorithms

Hindu: optimal - “It was the best of times”
Greek: terrible -“it was the worst of times”

Complexity of a function =
Complexity of its best algorithm

Trivia: power of decimals
1080=100
 00
 ≈ number of atoms in the universe

1080 - is a small number to write down
 - is a large number to count to

1040=100
 ≈ number of steps of the fastest
 computer before the sun dies

Complexity of functions
comp(add) = n
comp(multiply) ≤ n2 [gradeschool]
comp(multiply) ≤ n⋅(log n) [schoenhage-strassen]
 Is there a better algorithm?
 Is there no better algorithm?
Main challenges of Theoretical CS
Only efficient algorithms get implemented

Efficient: n, n⋅logn, n2, n3,.. (polynomial)
Inefficient: 2n, 2√n,… (exponential)

Grade-school multiply algorithm

 Efficient algorithms –
Gems of computer science

Drivers of invention & industry
 Who were
Edison ? Dijkstra ?
Archimedes ? Tukey ?
Guttenberg ? Berlekamp ?
Bell ? Knuth ?
…… ……

Few gems: elegance, efficiency, utility

Shortest path
Dijkstra 1959

Network flows
Internet routing
Dynamic Programming
……

define Dijkstra(Graph G, Node s)
 S := {}
 Q := Nodes(G)
 while not empty(Q)
 u := extractMin(Q)
 S := S ∪ u
 for each node v in neighbors(u)
 if d(u) + w(u,v) < d(v) then
 d(v) := d(u) + w(u,v)
 pi(v) := u

Distance (Cingman, Safford)
Path (Cingman, Safford)

Pattern matching
Knuth-Morris-Pratt
Boyer-Moore 1977

Text processing
Genome
Molecular Biology
Web search

algorithm kmp_search:

 input: T (text), P (pattern sought)

 define variables:

 m ← 0, i ← 0, M (the table)

 while m + i is less than length of T, do:

 if P[i] = T[m + i], let i ← i + 1

 if i = length of P then return m

 otherwise, let m ← m + i - M[i],

 if i > 0 let i ← M[i]

Text CAUCGCGCUUCGC
Pattern CGC

Text CAUCGCGCUUCGC
Location X X X

Fast Fourier
Transform (FFT)
Cooley-Tukey 1965
Gauss 1805

Audio processing
Image processing
Tomography, MRI
Fast multiplication
Quantum algorithms

 T(0), T(1), T(2), ….T(N)

Error correction
Reed-Solomon decoding
Berlekamp-Massey 68

CDs
DVDs
Satellite communication
Cell phone communication

INPUT: a binary sequence S = SO,S1,S2,....Sn.
OUTPUT: the complexity L (S) of S, 0< L (S) < N.
1. Initialization: C(D):=l, L:=O m:=-l, B{D):=l, N:=O.
2. While (N < n) do the following:
 2.1 Compute the next discrepancy d.
 d:= (SN

 + Σ ciSN-i) mod 2.
 2.2 If d = 1 then do the following:
 T (D):=C (D), C (D):=C(D)+B(D)⋅DN-m.
 If L < N/2 then L:=N+l-L, m:=N, B(B):=T (D).
 2.3 N:=N+l.
3. Return(L) .

 The class P
All problems having an efficient
algorithm to find solutions
(the galaxy of problems closest to us)

Are all practically interesting problems
in P?

Cobham, Edmonds
Rabin ~1965

Three problems
 Input Output Complexity
Factoring 1541 23 ×67
integers 267-1 193,707,721 × 761,838,257,287 ≤ 2√n

Proving n+”Riemann n symbol
theorems Hypothesis” proof ≤ 2n

Solving
Sudoku ≤ nn

 Input Output Complexity
Factoring 1541 23 ×67
integers 267-1 ?? ≤ 2√n

Proving n+”Riemann n symbol
theorems Hypothesis” proof ≤ 2n

Solving
Sudoku ≤ nn

What is common to all 3 problems?
- All look currently intractable, even for
moderate n (best algorithms exponential)
-  Specific instances get solved!
-  Easy verification of given solutions !!!

Verification
267-1 = 193707721 x
 761838257287

n+Poincare n+Fermat’s
Conjectute “Theorem”

 n = 200 pages

 The class NP
All problems having efficient verification
algorithms of given solutions

For every such problem, finding a
solution (of length n) takes ≤ 2n steps:
try all possible solutions & verify each.

Can we do better than “brute force” ?
Do all NP problems have efficient algs ?

Cook & Levin
 ~1971

P versus NP
P: Problems for which solutions can
 be efficiently found
NP: Problems for which solutions can
 be efficiently verified

Fact: P ⊆ NP [finding implies verification]
Conjecture: P ≠ NP [finding is much harder than
 verification]

“P=NP?” is a central question of
 math, science & technology !!!

what is in NP?
Mathematician: Given a statement, find a proof
Scientist: Given data on some phenomena,
 find a theory explaining it.
Engineer: Given constraints (size,weight,energy)
 find a design (bridge, medicine, phone)

In many intellectual challenges, verifying that
we found a good solution is an easy task !
(if not, we probably wouldn’t start looking)

If P=NP, these have fast, automatic finder

 Input Output Complexity
Factoring 1541 23 ×67
integers 267-1 ?? ≤ 2√n

Proving n+”Riemann n symbol
theorems Hypothesis” proof ≤ 2n

Solving
SuDoku ≤ nn

How do we tackle P vs. NP?
Break RSA,
ruin E-commerce

Pick any one of the
three problems.

I’ll solve it on each
input instantly.

Choose, oh Master!

Fame & glory
$6M from CLAY

Take out the fun of
Doing these puzzles

Let’s choose the
SuDoku solver

 The power of SuDoku I

Using SuDoku solver for Integer factoring

Both translators are efficient algorithms!

 267-1

 193707721 x
 761838257287

Input translator

 Solution translator

Cook-Levin
Factoring→
SuDoku
dictionary

 The power of SuDoku II
Using SuDoku solver for Theorem proving

Both translators are efficient algorithms!

200+ Riemann
 Hypothesis

Definition…lemma
Lemma…proof..def…
lemma…proof…QED

Input translator

 Solution translator

Cook-Levin
Thm proving
→ SuDoku
dictionary

SuDoku solver can solve any NP problem
Cook-Levin ’71: NP-complete problems exist!
 SAT is NP-complete. “Meta dictionary” to any
 NP problem. Another efficient algorithm gem.
Karp ’72: NP-complete problems abound!
 21 problems in logic, optimization, algebra,..
Today: ~3000 problems in all sciences, equivalent
Yato ’03 (MSc thesis): SuDoku is NP-complete

P=NP iff SuDoku has an efficient algorithm

Universality: NP-completeness

NP-complete problems:
If one is easy, then all are!
If one is hard, then all are!

SuDoku, NP-complete
Thm proving: NP-complete
Integer factoring: we don’t know

Universality: NP-completeness

Computation is
everywhere

US

Shortest
Route

Unsolvable Solvable Chess / Go
Strategies

Multiplication

I’m late

Addition

Pattern
Matching

Shortest
Route

Solving
Sudoku

Theorem
Proving

Map
Coloring

NP-complete

SAT
Integer
Factoring

Graph
Isomorphism

P

FFT NP

