Dynamic Programming for Sequence Alignment

An Important Algorithm Design Technique

Dynamic Programming
Give a solution to a problem using smaller sub-problems, e.g. a recursive solution
Useful when the same sub-problems show up again and again in the solution

Sequence Similarity

GGACCA

TACTAAG

TCCAAT

Sequence Similarity: What

G G A C C A

Sequence Similarity: Why

Most widely used comp. tools in biology
New sequence always compared to sequence data bases
Similar sequences often have similar origin or function
Recognizable similarity after $10^{8}-10^{9} \mathrm{yr}$
not to mention:

- Unix "diff",
- module histories in version control systems,
- programming assignment pairs with sadly questionable evolutionary history,
- etc., etc., ...

Terminology

String: ordered list of letters tataAg Prefix: consecutive letters from front empty, T, TA, TAT, ...
Suffix: ... from end
empty, G, AG, AAG,
Substring: ... from cnds or middle
empty, TAT, AA, ...
Subsequence: ordered, nonconsecutive
TT, AAA, TAG,

Sequence Alignment

$a c b c d b$ $c a d b d$

$$
\begin{aligned}
& a c--b c d b \\
& c \\
& -c a d b-d-d
\end{aligned}
$$

Defn: An alignment of strings S, T is a pair of strings S^{\prime}, T^{\prime} (with spaces or '-') s.t.
(1) $\left|S^{\prime}\right|=\left|T^{\prime}\right|$, and
(|S| = "length of S")
(2) removing all spaces leaves S, T

Alignment Scoring

> E.g.:
> Mismatch $=-1$
> Match $=2$

$$
\begin{array}{llllll}
a & c & b & c & d & b \\
c & a & d & b & d & d
\end{array}
$$

$$
\begin{array}{cccccccc}
a & c & - & - & b & c & d & b \\
- & c & a & d & b & - & d & d \\
-1 & 2 & -1 & -1 & 2 & -1 & 2 & -1 \\
\text { Value } & =3 * 2 & +5 * & (-1) & =+1
\end{array}
$$

The score of aligning (characters or spaces) $x \& y$ is $\sigma(x, y)$.
\longleftarrow in general
Value of an alignment $\quad \sum_{i=1}^{\left|S^{\prime}\right|} \sigma\left(S^{\prime}[i], T^{\prime}[i]\right)$
An optimal alignment: one of max value

Analysis of brute force

Assume $|\mathrm{S}|=|\mathrm{T}|=\mathrm{n}$
Time to evaluate one alignment: $\mathrm{O}(\mathrm{n})$
How many alignments are there: $\quad \begin{aligned} & S=a b c d e \\ & T=v w \times y z\end{aligned}$

$$
\sum_{k=0}^{n}\binom{n+k}{k}\binom{n}{k}
$$

Total time more than $2^{2 n}$, for $n>3$
E.g., for $n=20$, time is $>2^{40}>10^{12}$ operations

Polynomial vs Exponential Growth

Dynamic Programming Alg: The Key Idea

Optimal alignment ends in 1 of 3 ways: last chars of S \& T aligned with each other last char of S aligned with space in T last char of T aligned with space in S
(never align space with space; $\sigma(-,-)<0$)
In each case, the rest of S \& T should be
optimally aligned to each other
(else you could improve by doing so)

Optimal Alignment in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ via "Dynamic Programming"

Input: $\mathrm{S}, \mathrm{T},|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}$
Output: value of optimal alignment
Common: first solve for value of opt.
$V(i, j)=$ value of optimal alignment of $S[1], \ldots, S[i]$ with $T[1], \ldots, T[j]$ for all $0 \leq i \leq n, 0 \leq j \leq m$.

Base Cases

$V(i, 0)$: first i chars of S all match spaces

$$
V(i, 0)=\sum_{k=1}^{i} \sigma(S[k],-)
$$

$\mathrm{V}(0, \mathrm{j})$: first j chars of T all match spaces

$$
V(0, j)=\sum_{k=1}^{j} \sigma(-, T[k])
$$

General Case

Opt align of $\mathrm{S}[1], \ldots, \mathrm{S}[\mathrm{i}]$ vs $\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]$:

$$
\left[\begin{array}{cc}
\sim \sim \sim \\
\sim \sim \sim \\
\sim[i]
\end{array}\right],\left[\begin{array}{cc}
\sim \sim \sim \sim \sim & T[j]
\end{array}\right] \text {, or }\left[\begin{array}{cc}
\sim \sim \sim \sim \sim \sim & - \\
\sim \sim \sim
\end{array}\right]
$$

Opt align of $S_{1} \ldots S_{i-1} \&$
$T_{1} \ldots T_{j-1}$

$$
V(i, j)=\max \left\{\begin{array}{ll}
V(i-1, j-1)+\sigma(S[i], T[j]) \\
V(i-1, j) & +\sigma(S[i],-) \\
V(i, j-1) & +\sigma(-, T[j])
\end{array}\right\},
$$

for all $1 \leq i \leq n, 1 \leq j \leq m$.

Mismatch $=-1$
Match $=2$

Example

Mismatch $=-1$
Match $=2$

Example

Mismatch $=-1$
Match = 2

Example

Calculating One Entry

$$
V(i, j)=\max \left\{\begin{array}{l}
V(i-1, j-1)+\sigma(S[i], T[j]) \\
V(i-1, j)+\sigma(S[i],-) \\
V(i, j-1)+\sigma(-, T[j])
\end{array}\right\}
$$

Mismatch $=-1$
Match = 2

Example

Mismatch $=-1$

Example

Match $=2$

	j	0	1	2	3	4	5
i			c	a	d	b	d
0		0	-1	-2	-3	-4	-5
1	a	-1	-1	1			
2	c	-2	1				
3	b	-3					
4	c	-4					
5	d	-5					
6	b	-6					

Mismatch $=-1$
Match $=2$

Example

	j	0	1	2	3	4	5
i			c	a	d	b	d
0		0	-1	-2	-3	-4	-5
1	a	-1	-1	1	0	-1	-2
2	c	-2	1	0	0	-1	-2
3	b	-3	0	0	-1	2	1
4	c	-4	-1	-1	-1	1	1
5	d	-5	-2	-2	1	0	3
6	b	-6	-3	-3	0	3	2

§

Finding Alignments: Trace Back

Arrows $=$ (ties for) max in $V(\mathrm{i}, \mathrm{j}) ; 3$ LR-to-UL paths $=3$ optimal alignments

i	j	0	1 c	2 a	3 d	4 b	5 d	$\leftarrow T$
0		(0)	-1	-2	-3	-4	-5	
1	a	-1.	-1	(1)	0	-1	-2	
2	c	-2	(1)	0	(0)	-1	-2	
3	b	-3	(0)	(0)	-1	(2)	1	
4	C	-4	-1	-1)	-1	(1)	1	
5	d	-5	-2	-2	(1)	0	(3)	
6	b	-6	-3	-3	0	(3)	(2)	

Complexity Notes

Time $=O(m n)$, (value and alignment)
Space $=O(m n)$
Easy to get value in Time $=O(m n)$ and
Space $=O(\min (m, n))$
Possible to get value and alignment in Time $=O(m n)$ and Space $=O(\min (m, n))$ but tricky.

Summary

Sequence similarity has important
Surprisingly simple scoring often works well in practice: score positions separately \& add
Simple "dynamic programming" algorithms can find optimal alignments under these assumptions in polynomial time (product of sequence lengths)
Keys to D.P. are to
a) identify the subproblems (usually repeated/overlapping)
b) be sure opt solutions to subproblems are needed for opt solution globally
c) solve in a careful order; solve all small ones before needed by bigger ones
d) build table with solutions to the smaller ones so bigger ones just need to do table lookups (no recursion, despite recursive formulation implicit in (a))

