
1

Dynamic Programming for
Sequence Alignment

2

An Important Algorithm
Design Technique

Dynamic Programming
Give a solution to a problem using smaller

sub-problems, e.g. a recursive solution
Useful when the same sub-problems show up

again and again in the solution

3

 Sequence Similarity

G G A C C A

T A C T A A G

T C C A A T

4

 Sequence Similarity: What

G G A C C A

T A C T A A G
 | : | : | | :
T C C – A A T

5

Sequence Similarity: Why

Most widely used comp. tools in biology
New sequence always compared to

sequence data bases
Similar sequences often have similar

origin or function
Recognizable similarity after 108 –109 yr
not to mention:
 - Unix “diff”,
 - module histories in version control systems,
 - programming assignment pairs with sadly questionable evolutionary history,
 - etc., etc., …

6

Terminology

String: ordered list of letters TATAAG

Prefix: consecutive letters from front
empty, T, TA, TAT, ...

Suffix: … from end
empty, G, AG, AAG, ...

Substring: … from ends or middle
empty, TAT, AA, ...

Subsequence: ordered, nonconsecutive
TT, AAA, TAG, ...

7

Sequence Alignment

 a c b c d b a c – – b c d b
 c a d b d – c a d b – d –

Defn: An alignment of strings S, T is a
pair of strings S’, T’ (with spaces or ‘-’) s.t.
(1) |S’| = |T’|, and (|S| = “length of S”)
(2) removing all spaces leaves S, T

8

 Alignment Scoring

a c b c d b a c - - b c d b

c a d b d d - c a d b - d d
 -1 2 -1 -1 2 -1 2 -1

 Value = 3*2 + 5*(-1) = +1

The score of aligning (characters or
spaces) x & y is σ(x,y).

Value of an alignment
An optimal alignment: one of max value

E.g.:
 Mismatch = -1
 Match = 2

in general

!

"(S'[i],T '[i])
i=1

|S'|
#

9

Analysis of brute force

Assume |S| = |T| = n
Time to evaluate one alignment: O(n)

How many alignments are there:

Total time more than 22n, for n > 3	

E.g., for n = 20, time is > 240 > 1012 operations

n�

k=0

�
n+ k

k

��
n

k

�

S = abcde
T = vwxyz

--abc-de ab--c-de

vw--xyz- --vwxyz-
(two alignments, but same value)

10

Polynomial vs Exponential Growth

11

Dynamic Programming Alg:
The Key Idea

Optimal alignment ends in 1 of 3 ways:
last chars of S & T aligned with each other

last char of S aligned with space in T
last char of T aligned with space in S
(never align space with space; σ(–, –) < 0)

In each case, the rest of S & T should be
optimally aligned to each other
(else you could improve by doing so)

12

Optimal Alignment in O(n2)
via “Dynamic Programming”

Input: S, T, |S| = n, |T| = m
Output: value of optimal alignment

Common: first solve for value of opt.

 V(i,j) = value of optimal alignment of
 S[1], …, S[i] with T[1], …, T[j]
 for all 0 ≤ i ≤ n, 0 ≤ j ≤ m.

13

Base Cases

V(i,0): first i chars of S all match spaces

V(0,j): first j chars of T all match spaces

 !

V (i,0) = " (S[k],#)
k=1

i
$

!

V (0, j) = " (#,T [k])
k=1

j
$

14

General Case

Opt align of S[1], …, S[i] vs T[1], …, T[j]:

Opt align of
S1…Si-1 &
T1…Tj-1

!

V(i,j) = max
V(i-1,j-1) +" (S[i],T[j])
V(i-1,j) +" (S[i], -)
V(i,j-1) +" (- , T[j])

$
%

&
%

'

(
%

)
%
,!

~~~~ T[ j]
~~~~ S[i]
"
$

%
& '
, ~~~~ T[j]

~~~~    (   
" 
# $ 

% 
& ' 
,  or ~~~~     (   

~~~~   S[i]
"
$

%
& '

.1,1 mjni !!!! all for

15

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6
 ↑
 S

Example
Mismatch = -1
Match = 2

Score(c,-) = -1
c
-

16

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6
 ↑
 S

Example
Mismatch = -1
Match = 2

Score(-,a) = -1
-
a

17

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6
 ↑
 S

Example
Mismatch = -1
Match = 2

Score(-,c) = -1
-  -
a c
-1

18

Calculating One Entry

!

V(i,j) = max
V(i-1,j-1) +" (S[i],T[j])
V(i-1,j) +" (S[i], -)
V(i,j-1) +" (- , T[j])

$
%

&
%

'

(
%

)
%

V(i-1,j-1)

V(i,j)

V(i-1,j)

V(i,j-1) S[i] . .

T[j]
 :

19

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6
 ↑
 S

Example
Mismatch = -1
Match = 2

1

-1 -2

-1 1

-3 1

-2

σ(a,a)=+2 σ(-,a)=-1

σ(a,-)=-1
ca-
--a

ca
a-

ca
-a

20

Example
 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1 1

2 c -2 1

3 b -3

4 c -4

5 d -5

6 b -6
 ↑
 S

Time =
 O(mn)

Mismatch = -1
Match = 2

21

Example
 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1 1 0 -1 -2

2 c -2 1 0 0 -1 -2

3 b -3 0 0 -1 2 1

4 c -4 -1 -1 -1 1 1

5 d -5 -2 -2 1 0 3

6 b -6 -3 -3 0 3 2
 ↑
 S

Mismatch = -1
Match = 2

22

Finding Alignments: Trace Back

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1 1 0 -1 -2

2 c -2 1 0 0 -1 -2

3 b -3 0 0 -1 2 1

4 c -4 -1 -1 -1 1 1

5 d -5 -2 -2 1 0 3

6 b -6 -3 -3 0 3 2
 ↑
 S

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths = 3 optimal alignments

23

Complexity Notes

Time = O(mn), (value and alignment)

Space = O(mn)

Easy to get value in Time = O(mn) and
Space = O(min(m,n))

Possible to get value and alignment in
Time = O(mn) and Space =O(min(m,n))
but tricky.

24

Summary

Sequence similarity has important
Surprisingly simple scoring often works well in practice: score

positions separately & add
Simple “dynamic programming” algorithms can find optimal

alignments under these assumptions in polynomial time (product
of sequence lengths)

Keys to D.P. are to
a)  identify the subproblems (usually repeated/overlapping)
b) be sure opt solutions to subproblems are needed for opt solution globally
c)  solve in a careful order; solve all small ones before needed by bigger ones
d) build table with solutions to the smaller ones so bigger ones just need to do

table lookups (no recursion, despite recursive formulation implicit in (a))

