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Lecture
1. Notice that for a function g and random variable X , the function g(X) is also a random

variable. Therefore, we can compute the expected value of g(X), in the discrete case,

E[g(X)] =
∑
y

yPr[g(X) = y] =
∑
x

g(x)Pr[X = x].

and in the continuous case,

E[g(X)] =

∫ ∞
−∞

yfg(X)(y) dy =

∫ ∞
−∞

g(x)fX(x) dx

The first equality is the definition of E and the second equality is proved in the book.

2. The probability density function may seem like a strange way to determine continuous prob-
abilities, but it’s actually quite natural. For a continuous random variable X with p.d.f. fX
we have, by definition,

Pr[a ≤ X ≤ b] =

∫ b

a

fX(x) dx.

Observe the pleasant similarity to the discrete case. If Y has p.m.f. pY then we also have

Pr[a ≤ Y ≤ b] =
b∑

y=a

pY (y).

3. Consider breaking a stick uniformly at random. The stick spans [0, 1] and we will model
the breaking spot as a random variable U uniform over [0, 1]. To make the problem more
interesting, let’s say there is a bug on the stick at a point p ∈ [0, 1]. Let Lp(U) be the random
variable representing the length of the part of the stick with the bug after the break. So,

Lp(U) =


1− U for U < p

U for U > p

dead bug for U = p

Let’s calculate the expected value of Lp(U). Using the formula above,

E[Lp(U)] =

∫ ∞
−∞

Lp(x)fU(x) dx.

Because U is uniform over [0, 1], that means fU(x) = 1 only for 0 ≤ x ≤ 1. Thus,

E[Lp(U)] =

∫ 1

0

Lp(x) dx

=

∫ p

0

1− x dx+
∫ 1

p

x dx

= x
∣∣∣p
0
− x2

2

∣∣∣p
0

+
x2

2

∣∣∣1
p

= p− p2

2
+

1

2
− p2

2

=
1

2
+ p(1− p).
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Exercises
1. For any real numbers a and b, show that E[aX + b] = aE[X] + b.

2. For any real numbers a and b, prove that

var(aX + b) = var(aX) = a2var(X).

3. Consider modeling the time (in hours) that a device is active before it breaks down as a
random variable X with probability density function

f(x) =

{
λe−x/100 for x ≥ 0 ,

0 for x < 0.

(a) Determine the value of λ so that the probability density function f satisfies the normal-
ization property. That is, so that

∫∞
−∞ f(x) dx = 1.

(b) Calculate the probability that the device breaks down within the first 100 hours of use.
(c) Calculate the probability the device breaks down after 50 but before 150 hours of use.

4. Recall that the Poisson random variable with parameter λ has probability mass function
defined as

Pr[X = k] = p(x) = e−λ
λk

k!
.

There’s a lot to say about a Poisson random variable and the best way to learn about it is to
read the book and google around. For now, let’s observe (without any real observation...) that
you can use the nicely tractable form of the Poisson to approximate the binomial. Specifi-
cally, for large number n of samples and for small probability p of success, it turns out that
setting λ = np gives a good approximation to a binomial random variable Y with parameters
n and p. What I really mean is that

Pr[X = k] ≈ Pr[Y = k].

See this for yourself by calculating both for k = 1, 2, 3, . . . with n = 10 and p = 0.1.
Quoted from wikipedia,

“According to two rules of thumb, this approximation is good
if n ≥ 20 and p ≤ 0.05, or if n ≥ 100 and np ≤ 10.”

Puzzle 1: Three Dice
You have an opportunity to bet $1 on a number between 1 and 6. Three dice are then rolled. If your
number fails to appear, you lose $1. If it appears once, you win $1; if twice, $2; if three times, $3.

Is this bet in your favor, fair, or against the odds? How can you determine this without doing
many calculations?

Puzzle 2: Rolling all the numbers
On average, how many times must you roll a die before all six different numbers have turned up?
Comment: there are more elegant and less elegant analyses.


