Exercises

1. Consider the process of rolling three six-sided dice. Represent the outcomes as $a b c$ where each a, b, and c can take values $1-6$, where $(\operatorname{die} \# 1=a),(\operatorname{die} \# 2=b),(\operatorname{die} \# 3=c)$
(a) Determine the sample space Ω and calculate $|\Omega|$. For an event $a b c$, what is $\operatorname{Pr}[a b c]$?
(b) Consider the function $f: \Omega \rightarrow \mathbb{N}$, where for the event $x=a b c \in \Omega$ we define f by

$$
f(x)=\text { the sum of the three dice }=a+b+c .
$$

What is $f(y)$ for $y=334 \leftrightarrow(\operatorname{die} \# 1=3)$, (die \#2 $=3$), (die \#3=4)? [super easy..]
(c) Consider the set $A=\{x \mid f(x)=10\}$. Describe this set in words, and determine $|A|$ (the easiest way to do this is by brute force).
(d) Thinking abstractly, what if we wanted to associate probabilities with different values of f ? How would you determine $\operatorname{Pr}[f(x)=10]$? To interpret this, think about rolling the three dice, and then computing $f(x)$ based on the outcome. What is the probability of getting the value $f(x)=10$?
2. To save space when computing the probabilities based on a function, let's define an object called a random variable. Formally, a random variable X is a function from the sample space to the real numbers. Instead of the typical $f(x)$ notation, since we only will care about the probabilities, we will write $X=x$ for the event that an outcome occurs which causes X to take the value x.
(a) Explain how random variables relate to the definition of an event as a subset of the sample space.
(b) Consider the process of flipping a fair coin five times in a row. Let Y be the random variable which maps a sequence of five coin flips to the number heads in the outcome. Calculate $\operatorname{Pr}[Y=k]$ for all $k=0,1, \ldots, 5$. What about for $k=6$?
(c) We can also make sense of the event $Y \geq k$ in the natural way - it means the event that you flip the five coins and you get at least k heads. Calculate $\operatorname{Pr}[Y \geq 2]$.
3. Define the expected value $\mathbf{E}[X]$ (which is a real valued function of a random variable X) as

$$
\mathbf{E}[X]=\sum_{i=1}^{m} x_{i} \cdot \operatorname{Pr}\left[X=x_{i}\right]
$$

where in this case X only takes values in $\left\{x_{1}, \ldots, x_{m}\right\}$.
(a) Determine the meaning of the expression "real-valued function of a random variable." In particular, why is it true that the expected value is a function of functions?
(b) Calculate $\mathbf{E}[Y]$ for Y described in (2b).
(c) Returning to (1), let X be the random variable which equals the maximum value of the three dice. Calculate $\operatorname{Pr}[X=k]$ for $k=1,2,3,4,5,6$. Calculate $\mathbf{E}[X]$.

Challenge: Random Rooks.

1. Imagine that eight rooks are randomly placed on a standard 8×8 chessboard, where at most one rook can occupy a single space. Find the probability that all the rooks will be safe from one another, i.e. that there is no row or column with more than one rook.
2. As n goes to infinity, what does the probability tend to? What does this mean?
3. Consider a three dimensional $8 \times 8 \times 8$ chessboard. Let's label the $3 D$ board by triples (i, j, k) where each of i, j, k range from 1 to 8 . To generalize safety, we say that two rooks are safe from each other if there are no two dimensions in which both of these rooks' positions agree. (in the $2 D$ case, it was if any one dimension agreed).

If eight rooks are randomly placed on a $8 \times 8 \times 8$ chessboard, what's the probability they will be safe from each other?

Hint: Last section we talked about a sequential method of calculating probabilities, where you imagine each part of the process happening in sequence, and multiply the probabilities at each step.

Hint: There's a natural recursive structure to the problem. After placing one rook on an 8×8 chessboard...

