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competing hypotheses

Does smoking cause lung cancer?

(a) No; we don’t know what causes cancer, but 
smokers are no more likely to get it than non-
smokers

(b) Yes; a much greater % of smokers get it

Notes: (1) even in case (b), “cause” is a stretch, but for 
simplicity, “causes” and “correlates with” will be 
loosely interchangeable today.  (2) we really don’t 
know, in mechanistic detail, what causes lung cancer, 
nor how smoking contributes, but the statistical 
evidence strongly points to smoking as a key factor.
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competing hypotheses
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Programmers using the Eclipse IDE make fewer errors

(a) Hooey.  Errors happen, IDE or not.

(b) Yes.  On average, programmers using Eclipse 
produce code with fewer errors per thousand 
lines of code



competing hypotheses
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Black Tie Linux has way better web-server throughput  
than Red Shirt.

(a) Ha!  Linux is linux, throughput will be the same

(b) Yes.  On average, Black Tie response time is 20% 
faster.



competing hypotheses
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This coin is biased!

(a) “Don’t be paranoid, dude.  It’s a fair coin, like any 
other, P(Heads) = 1/2” 

(b) “Wake up, smell coffee: P(Heads) = 2/3, totally!”



competing hypotheses

How do we decide?

Design an experiment, gather data, evaluate:

In a sample of N smokers + non-smokers, does % 
with cancer differ?  Age at onset?  Severity?

In N programs, some written using IDE, some not, do 
error rates differ?

Measure response times to N individual web 
transactions on both.

In N flips, does putatively biased coin show an unusual 
excess of heads?  More runs?  Longer runs?

A complex, multi-faceted problem. Here, emphasize evaluation: 

What N?  How large of a difference is convincing?
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hypothesis testing
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By convention, the null hypothesis is usually the “simpler” hypothesis, or “prevailing 
wisdom.”  E.g., Occam’s Razor says you should prefer that, unless there is strong 
evidence to the contrary.

Example:

100 coin flips

P(H) = 1/2

P(H) = 2/3

“if #H ≤ 60, accept 
null, else reject null”

P(H ≤ 60 | 1/2) = ?
P(H  >  60 | 2/3) = ?

General framework:

1. Data

2. H0 – the “null hypothesis”

3. H1 – the “alternate hypothesis”

4. A decision rule for choosing 
between H0/H1 based on data

5. Analysis:  What is the probability 
that we get the right answer?



error types
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H0 True H1 True

observed fract of heads→

de
ns

ity

Type I error: false reject; 
reject H0 when it is true.  
α = P(type I error)

Type II error: false accept; 
accept H0 when it is false.  
β = P(type II error)

Goal: make both α, β small (but it’s a 
tradeoff; they are interdependent).
α ≤ 0.05 common in scientific literature.

0.5                 0.6         0.67

decision
threshold

α

β

rejection region



decision rules
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Is coin fair (1/2) or biased (2/3)?  How to decide?  Ideas:

1. Count: 	

Flip 100 times; if number of heads observed 
is ≤ 60, accept H0 
or ≤ 59, or  ≤ 61 ... ⇒ different error rates

2. Runs: 	

 Flip 100 times.  Did I see a longer run of 
heads or of tails?

3. Runs:	

 Flip until I see either 10 heads in a row 
(reject H0) or 10 tails is a row (accept H0)

4. Almost-Runs:  As above, but 9 of 10 in a row 

5.  . . .

Limited only by your ingenuity and ability to analyze.
But how will you recognize best α, β ?



likelihood ratio tests

A generic decision rule:  a “Likelihood Ratio Test”

E.g.:

c = 1: accept H0 if observed data is more likely under 
that hypothesis than it is under the alternate, 
but reject H0 if observed data is more likely 
under the alternate

c = 5: accept H0 unless there is strong evidence that 
the alternate is more likely (i.e. 5 x)

Changing the threshold c shifts α, β, of course.
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example

Given: A coin, either fair (p(H)=1/2) or biased (p(H)=2/3)

Decide: which

How?  Flip it 5 times.  Suppose outcome D = HHHTH

Null Model/Null Hypothesis M0: p(H) = 1/2

Alternative Model/Alt Hypothesis M1: p(H) = 2/3

Likelihoods:
P(D | M0) = (1/2) (1/2) (1/2) (1/2) (1/2) =   1/32

P(D | M1) = (2/3) (2/3) (2/3) (1/3) (2/3) = 16/243

Likelihood Ratio:  

I.e., alt model is ≈ 2.1x more likely than null model, given data

€ 

p(D |M 1 )
p(D |M 0 )

= 16 / 243
1/ 32 = 512

243 ≈ 2.1



simple vs composite hypotheses

A simple hypothesis has a single, fixed parameter value

E.g.:  P(H) = 1/2

A composite hypothesis allows multiple parameter 
values

E.g.; P(H) > 1/2
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Note that LRT is problematic for composite hypotheses; which 
value for the unknown parameter would you use to compute its 
likelihood?



Neyman-Pearson lemma

The Neyman-Pearson Lemma

If an LRT for a simple hypothesis H0 versus a simple 
hypothesis H1 has error probabilities α, β, then any test 
with type I error α’ ≤ α must have type II error β’ ≥ β 
(and if α’ < α, then β’ > β)

In other words, to compare a simple hypothesis to a 
simple alternative, a likelihood ratio test will be as good 
as any for a given error bound.  E.g., 
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example

H0: P(H) = 1/2	

 	

 Data: flip 100 times

H1: P(H) =  2/3	

	

 Decision rule:  Accept H0 if #H ≤ 60

α = P(#H > 60 | H0) ≈ 0.018

β = P(#H ≤ 60 | H1) ≈ 0.097
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“R” pmf/pdf functions

;                              ;



example (cont.)
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some notes

Log of likelihood ratio is equivalent, often more 
convenient

add logs instead of multiplying…

“Likelihood Ratio Tests”: reject null if LLR > threshold

LLR > 0 disfavors null, but higher threshold gives 
stronger evidence against 

Neyman-Pearson Theorem: For a given error rate, LRT 
is as good a test as any (subject to some fine print).
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summary

Null/Alternative hypotheses - specify distributions from which data 
are assumed to have been sampled

Simple hypothesis - one distribution
E.g., “Normal, mean = 42, variance = 12”

Composite hypothesis - more that one distribution
E.g., “Normal, mean > 42, variance = 12”

Decision rule; “accept/reject null if sample data...”; many possible

Type 1 error: false reject/reject null when it is true

Type 2 error: false accept/accept null when it is false
α = P(type 1 error),  β = P(type 2 error)

Likelihood ratio tests: for simple null vs simple alt, compare ratio of 
likelihoods under the 2 competing models to a fixed threshold.

Neyman-Pearson: LRT is best possible in this scenario.
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Significance Testing  
B & T 9.4



(binary ) hypothesis testing

2 competing hypotheses H0 (the null), H1 (the alternate)

E.g., P(Heads) = ½ vs P(Heads) = ⅔
Gather data, X

Look at likelihood ratio            ;  is it > c?

Type I error/false reject rate α; 

Type II error/false non-reject rate β
Neyman-Pearson Lemma: no test will do better (for simple hyps)

Often the likelihood ratio formula can be massaged into an 
equivalent form that’s simpler to use, e.g. 
    “Is #Heads > d?”

Other tests, not based on likelihood, are also possible, say
    “Is hyperbolic arc sine of #Heads in prime positions > 42?”
but Neyman-Pearson still applies...
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Rec
all

L(X|H1)

L(X|H0)



What about more general problems, e.g. with composite 
hypotheses?  

E.g., P(Heads) = ½ vs P(Heads) not = ½ 

Can I get a more nuanced answer than accept/reject?

General strategy:

Gather data, X1, X2, …, Xn

Choose a real-valued summary statistic, S = h(X1, X2, …, Xn)

Choose shape of the rejection region, e.g. R = {X | S > c}, c t.b.d.

Choose significance level α (upper bound on false rejection prob) 

Find critical value c, so that, assuming H0,  P(S>c) < α

No Neyman-Pearson this time, but (assuming you can do or 
approximate the math for last step) you now know the significance 
of the result 

significance testing
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NB: LRT won’t work – can’t 
calculate likelihood for “p≠½”



example: fair coin or not?

I have a coin.  Is P(Heads) = ½ or not?

E.g., if you see 532 heads in 1000 flips you can reject  H0 at the 5% 
significance level 
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General strategy:

Gather data, X1, X2, …, Xn

Choose a real-valued summary 
statistic, S = h(X1, X2, …, Xn)

Choose shape of the rejection 
region, e.g. R = {X | S > c}, c t.b.d.

Choose significance level α (upper 
bound on false rejection prob) 

Find critical value c, so that, 
assuming H0,  P(S>c) < α

For this example:

Flip n = 1000 times: X1, …, Xn

Summary statistic, S = # of 
heads in X1, X2, …, Xn

Shape of the rejection region:
R = { X s.t. |S-n/2| > c}, c t.b.d.

Choose significance level 
α = 0.05

Find critical value c, so that, 
assuming H0,  P(|S-n/2| > c) < α

Given H0, (S-n/2)/sqrt(n/4) is ≈ Norm(0,1), so c = 1.96*√250 ≈ 31 
gives the desired 0.05 significance level.



p-values

The p-value of an experiment is:
p = min { α | H0 would be rejected at the α significance level }

I.e.,  observed S is right at the critical value for α = p

Why?
Shows directly how much leeway you have w.r.t. any desired 
significance level.

Avoids pre-setting the significance level (pro/con)

Examples:
531/1000 heads has a p-value of 0.0537,   > α
532/1000 heads has a p-value of 0.0463,   < α
550/1000 heads has a p-value of 0.00173, ≪ α

It is not the probability that the null hypothesis is true 

It’s the probability of seeing data this extreme, assuming null is true
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nonrandom; 
it is or it isn’t



example: is the mean zero or not (σ2 known)?

Suppose X ~ Normal(µ, σ2), and σ2 is known.  

    H0: µ = 0      vs      H1: µ ≠ 0

Data: 

Summary statistic – want something related to mean; how about:

(assuming H0, ΣXi has mean = 0, var = n σ2, so S ~ N(0,1) )

If we make rejection region R = { X | |S| > 1.96 }, this will reject 
the null at the α = 0.05 significance level.  I.e., assuming µ = 0, an 
extreme sample with |S|>1.96 will be drawn only 5% of the time.

Similarly, if we observe S = 2.5, say, then p-value = 0.0124
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see next slide
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example

lbsoff.com sells diet pills.  10 volunteers used them for a 
month, reporting the net weight changes of:
  x <- c(-1.5, 0, .1, -0.5, -.25, 0.3, .1, .05, .15, .05)
  >  mean(x)
  [1] -0.15

lbsoff proudly announces “Diet Pill Miracle!”
  > cat("stddev=",sd(x), "tstat=",sum(x)/sd(x)/sqrt(10))
  stddev= 0.5244044 tstat= -0.904534
  > t.test(x)
  t = -0.9045, df = 9, p-value = 0.3893
  alternative hypothesis: true mean is not equal to 0 
  95 percent confidence interval: -0.5251363  0.2251363 

What do you think?
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Bernoulli RVs, unknown means θX, θY
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Something Completely 
Different



Ok, Ok  –  Not on the final…
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Ok, Ok  –  Not on the final…



RNAseq

Cells make RNA.  Biologists “read” it 
– a (biased!) random sampling process



Fragment Bias
The bad news: random fragments are not so uniform.

The good news: non-uniformity can be predicted the nucleotide sequence.

does this look like a 
uniform random 

sample?

–––––––––––  Part of one gene  –––––––––



Fragment Bias
The bad news: random fragments are not so uniform.

The good news: non-uniformity can be predicted the nucleotide sequence.
The Good News: we can (partially) correct the bias

not perfect, 
but better

does this look like a 
uniform random 

sample?



Fragment BiasFragment Bias

Fitting a model of the sequence surrounding read starts
lets us predict which positions have more reads.
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Fig. 1. Nucleotide frequencies are plotted relative to the start (labeled position 0) of each mapped read, respecting strand, and grouped by platform (Illumina
or ABI SOLiD). The datasets plotted here are those used for evaluation, listed in Table 1. The sequence is taken from the genomic context surrounding the
read, so that −40 to −1, for example, fall outside the read sequence itself. The symmetrized Kullback–Leibler divergence is used to summarize the difference
in nucleotide frequency compared with a fixed estimate of background nucleotide frequencies made by sampling many positions near mapped reads. Under
the assumption that reads are sampled uniformly from transcripts, each of the plots should be essentially flat.

Table 1. Datasets on which the methods are evaluated

Experiment Species Platform Protocol Read
length

Wetterbom et al. (2010) Chimp. ABI mRNA 33
Katze,M.G. (unpublished data) Macaque ABI WT 50
Bullard et al. (2010) Human Illumina mRNA 35
Mortazavi et al. (2008) Mouse Illumina mRNA 33
Trapnell et al. (2010) Mouse Illumina mRNA 75

The protocol column lists whether a poly-A priming step to select for polyadenylated
transcripts was used (mRNA), or depletion of ribosomal RNA with no step to select for
polyadenylated transcripts (WT).

version of Cufflinks (Trapnell et al., 2010), and tightly incorporated
into its estimation of transcript abundance, requiring either predicted
or existing gene annotations.

Here we propose a new approach, using Bayesian networks to
model sequence probabilities. Unlike the methods of Roberts or Li,
our model requires no gene annotations, nor even the assumption that
the short reads are derived from RNA. In this sense, we build on the
work done by Hansen et al. (2010), generalizing their approach in
a way we find to be more robust and effective at correcting for bias
in a variety of protocols. Due to the weak assumptions required by
our model, it is applicable and potentially useful in any setting in
which short reads are aligned to a reference sequence.

2 METHODS

2.1 Principle
We begin with a natural model of an RNA-Seq experiment (and one that
is often assumed, whether implicitly or otherwise). The number of reads xi

aligned to genomic position i is an unbiased estimate of RNA abundance.
Furthermore, we assume reads may be treated as independent and identically

distributed samples. That is, if N reads are generated, and mi is the event
that a generated read maps to position i, then E[xi]=N Pr[mi].

The experiment may be considered unbiased with regards to sequence
if, having observed the nucleotide sequence si surrounding position i, the
expected number of reads sampled from position i is independent of si, i.e. if

E[xi|si]=N Pr[mi|si]=N Pr[mi]=E[xi]

From Bayes’ rule,

Pr[mi|si]=
Pr[si|mi]Pr[mi]

Pr[si]
This suggests a natural scheme in which observations may be reweighted
to correct for bias. First, define the sequence bias bi at position i as bi =
Pr[si]/Pr[si|mi].

Now, if we reweight the read count xi at position i by bi, we have,

E[bixi|si]=biE[xi|si]
=Nbi Pr[mi|si]

=N
Pr[mi|si]Pr[si]

Pr[si|mi]
=N Pr[mi]
=E[xi]

Thus, the reweighted read counts are made unbiased.
To estimate the bias bi, we must make estimates of the background

sequence probability Pr[si] and the foreground sequence probability
Pr[si|mi], the latter being the probability of the sequence given a read being
sampled from its position. Estimating bias is therefore a problem of finding
a model of sequence probability that is sufficiently complex to capture the
common features of the training data yet avoids overfitting.

Toward that end, we propose training a Bayesian network using examples
of foreground and background sequences. By training the model
discriminatively and penalizing model complexity, we can avoid a model that
is overparametrized, excluding parameters that are insufficiently informative
in discriminating between foreground and background. The Bayesian
network can then be used to evaluate sequence probability, and thus bias, at
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(a)

(b)

(c)

(d)

(e)

Fig. 2. An overview of the approach taken: (a) foreground sequences
are sampled from the regions surrounding the starts of mapped reads;
(b) background sequences are sampled by randomly offsetting foreground
positions; (c) a Bayesian network is trained to discriminate between the
set of sampled foreground and background sequences; (d) and the model
is evaluated at each position within a locus, predicting bias. The predicted
bias can then be used to adjust read counts, as in (e). In (d) and (e), we
show the results of this method applied to the 3′ UTR of Apoa2, using data
from Mortazavi et al. (2008). In bias coefficients predicted across 10 million
positions of chromosome 1, the log10 bias of 95% of the positions were
between −1.14 and 0.63, suggesting that most adjustments are not large.
The R2 measure, detailed in Section 3.2, gives the relative increase in log-
likelihood under a uniform sampling model, after correcting for bias, with
1.0 indicating a perfect fit, and the score of 0.38 here indicating a significant
increase.

any genomic position. Figure 2 gives a schematic overview of the proposed
model.

We have so far ignored one complication: the RNA abundance that
we wish to estimate is not itself independent of the nucleotide sequence.
Notably, exonic DNA tends to be more GC-rich than intergenic DNA. If
background sequences are sampled uniformly from the genome. we run the
risk of incorrectly adjusting for biological sequence bias, rather than technical
sequence bias. To avoid this, we propose using paired training data. Each
foreground training sequence is paired with a background sequence taken
from a nearby position that is likely to have similar abundance and general
nucleotide composition. Alternatively, we could pair foreground samples
with background samples from within the same transcript, but we prefer to
avoid dependence on existing gene annotations.

The methods proposed by Hansen et al. (2010) and (Roberts et al.,
2011) also treat bias correction as a problem of estimating foreground
and background sequence probabilities. They differ primarily in how these
sequence probabilities are estimated. Li et al. (2010) estimate reweighting
coefficients (bi, in our notation) directly, given training data consisting of
long annotated, highly expressed transcripts.

2.2 Estimation
To estimate sequencing bias, we train a Bayesian network in which each
node represents a position in the sequence, relative to the read start, and

edges encode dependency between positions. Bayesian networks have been
applied to recognize motifs in nucleotide sequences in the past, in particular
in modeling splice sites (Cai et al., 2000; Chen et al., 2005) and transcription
factor binding sites (Ben-Gal et al., 2005; Grau et al., 2006; Pudimat et al.,
2005).

In our model, we do not rely on constraining the set of networks (e.g. to
trees), and instead approximate the NP-Hard problem of determining the
optimal network structure using a fast hill-climbing algorithm. Furthermore,
we train our model discriminatively; only parameters that are deemed
informative in discriminating between foreground and background sequences
are included in the model. We thus seek to train a model that reduces
bias, without including uninformative parameters that would only increase
variance.

2.2.1 Sampling The model is trained on n sequences, one half labeled as
foreground, the other background, sampled from the reference genome. To
obtain the foreground sequences, we take sequences surrounding (extending
20 nt to either side, by default) the start positions of a randomly sampled
set of n/2 aligned reads. To avoid the risk of the method being overfit to
reads deriving from a few highly expressed genes, we ignore duplicate reads,
which we define as two reads mapping to the same location in the genome.
The nucleotide sequence is taken from the genome, rather than the reads
themselves, allowing us to include positions outside of the read.

To obtain background training sequences, we randomly offset the positions
from which the foreground sequences were sampled. The offset is drawn from
a zero-mean Gaussian (with σ2 =10, by default), and rounded to the nearest
integer, away from zero. By using such a scheme, we attempt to mitigate the
effects of biological sequence bias, sampling positions that are more likely
to be biologically similar.

This procedure produces a training set of n sequences with accompanying
labels T ={(s1,x1),(s2,x2),...,(sn,xn)}. The label xi is binary, indicating
classification as background (xi =0) or foreground (xi =1).

2.2.2 Training To determine the structure and parameters of the Bayesian
network, we use a hill-climbing approach similar to the algorithm described
by Grossman and Domingos (2004). The network structure is determined by
greedily optimizing the conditional log-likelihood:

"=
n∑

i=1

logPr[xi|si]=
n∑

i=1

log
Pr[si|xi]Pr[xi]∑

x∈{0,1}Pr[si|x]Pr[x]

where Pr[x] is flat (i.e. Pr[x=0]=Pr[x=1]=0.5) since we sample
foreground and background positions equally.

As we will be estimating parameters and evaluating the likelihood on the
same set of samples, simply maximizing the likelihood would severely overfit
the training set. We thus penalize model complexity heuristically using the
Bayesian information criterion (Schwarz, 1978). Where m is the number of
parameters needed to specify the model, we maximize, "′ =2"−m logn.

Some benefit might be obtained from a more highly tuned complexity
penalty. However, since the model is trained greedily, additional parameters
will be decreasingly informative, and increasingly similar between
foreground and background. Adding more parameters will have little
effect. Only when m is allowed to grow exponentially does the prediction
become polluted by small deviations between thousands of uninformative
parameters.

At each step of the optimization procedure, every possible edge or position
addition, removal or edge reversal that produces a valid, acyclic network is
evaluated, and the alteration that increases the score "′ the most is kept.
This process is repeated until a local maximum is found, in which no
single alteration to the network will increase the score. Given the network
structure, the parameters are estimated directly from the observed nucleotide
frequencies in the training data.

The run time of the training procedure is further reduced in practice by
imposing the following two restrictions on the structure of the network, First,
the in-degree (i.e. number of parents) of any node must be less than some
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Fig. 3. The network structures learned on each of the datasets are displayed. Positions are relative to the read start, which is labeled 0. Hollow circles
indicate positions that were not included in the model, being deemed uninformative, given the other positions and edges. The number of parameters needed
to specify each model is listed in parenthesis below. Applied to data with less bias, a sparser model is trained, as evinced by the Wetterbom dataset. Note that
dependencies (i.e. arrows) tend to span a short distances, and nodes tend to have a small in-degree (i.e. have few inward arrows). In practice, we save time in
training by prohibiting very distant dependencies (>10, by default) or very high in-degrees (> 4, by default).

number pmax. Secondly, for all edges (i,j), |j− i|≤dmax for some number
dmax. This latter rule encodes the assumption that distant nucleotides are
effectively independent. We choose pmax =4 and dmax =10, as reasonable
default values (Section 2 in Supplementary Material).

Figure 3 shows examples of the structure learned when this procedure is
applied to several datasets, using 100 000 reads from each.

3 RESULTS
Since we cannot observe directly the underlying RNA abundance,
our evaluation strategy relies on testing three assumptions we make
of an ideal, unbiased RNA-Seq experiment.

(1) Positional nucleotide frequencies (as in Fig. 1), measured from
reads within exons, should not differ greatly from frequencies
measured by sampling uniformly within the same exons.

(2) Read counts across a single exon should follow,
approximately, a Poisson process.

(3) Adjusting for bias in RNA-Seq should increase the agreement
between RNA-Seq and another method of quantification.

Evident from Figure 2, the assumption of uniform read coverage
often does not hold in typical RNA-Seq datasets. Although the
bias corrected read counts across the exon pictured in this example
are visibly more uniform, we sought a simple, objective tests
that could be applied genome-wide. To this end, we used cross-
validation tests (i.e. methods were trained and tested on disjoint
subsets of the same RNA-Seq datasets) of a quantitative measure
of the increase in uniformity of nucleotide frequencies (Kullback–
Leibler divergence in Section 3.1) and increase in uniformity of
read coverage (Poisson regression in Section 3.2). Additionally, we
compare RNA-Seq-based estimate of gene expression to quantitative
real-time PCR (qRT-PCR) based estimates for the same genes,
showing increased correlation between the two methods after bias
correction (Section 3.3).

To evaluate the first two assumption, we applied our procedure
(labeled ‘BN’) as well as those of Li et al. (2010) (‘GLM’ and
‘MART’) and Hansen et al. (2010) (7mer), which are implemented
in the R packages mseq and Genominator, respectively, to four
publicly available datasets (Bullard et al., 2010; Mortazavi et al.,
2008; Trapnell et al., 2010; Wetterbom et al., 2010), as well as an
unpublished dataset of our own (Table 1).

Each method was trained on data taken from chromosomes 1–8
of the genome from which the reads were mapped (including
chromosomes 2a and 2b of the Chimpanzee genome). For
evaluation, we drew a set of long, highly expressed exons from the
remaining chromosomes. In particular, for each reference sequence,
beginning with the set of exons annotated by Ensembl release 60
(Hubbard et al., 2009), we removed any exons with known alternate
splice sites, then chose the top 1000 exons by read count, restricting
ourselves to those at least 100 nt long.

The differences in the methods being tested necessitated training
procedures unique to each. The total number of reads used to train
each method is listed in Section 3 in Supplementary Material, and
below we describe the procedure used for each.

Li et al. (2010) recommends that their MART and GLM models
be trained using the 100 most abundant genes. We used 1000 exons
from chromosomes 1–8, otherwise chosen in a manner identical to
that which was used to select the test exons. Both the GLM and
MART models were trained considering the initial read position
and 20 nt upstream and downstream, and otherwise using default
parameters.

Hansen et al. (2010) recommends using all the reads to estimate
heptamer frequencies used by their model. The training procedure
works by simple tallying of frequencies. The implementation of this
model in the Genominator package uses a great deal of memory, and
we were unable to train with the volume of data we wished, so we
reimplemented the model and trained it on all of the reads aligned
to chromosomes 1–8.

We evaluated several variations of the heptamer model. The
suggested method involved averaging the frequencies of the first
two heptamers of each read. Yet, we found that in every case,
this performed worse than simply counting the frequencies of
the initial heptamer, and thus we report only the latter. The
background frequencies are estimated from positions 18–23 in each
read.

Our own method was trained on the 100 000 randomly selected
reads from chromosomes 1–8, considering the initial read position
and 20 nt upstream and downstream.

All datasets were mapped using Bowtie (Langmead et al., 2009)
using default parameters against, respectively, the hg19, mm9,
rheMac2 and panTro2 genome assemblies obtained from the UCSC
Genome Browser (Karolchik et al., 2008).
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(a)

(b)

(c)

(d)

(e)

Fig. 2. An overview of the approach taken: (a) foreground sequences
are sampled from the regions surrounding the starts of mapped reads;
(b) background sequences are sampled by randomly offsetting foreground
positions; (c) a Bayesian network is trained to discriminate between the
set of sampled foreground and background sequences; (d) and the model
is evaluated at each position within a locus, predicting bias. The predicted
bias can then be used to adjust read counts, as in (e). In (d) and (e), we
show the results of this method applied to the 3′ UTR of Apoa2, using data
from Mortazavi et al. (2008). In bias coefficients predicted across 10 million
positions of chromosome 1, the log10 bias of 95% of the positions were
between −1.14 and 0.63, suggesting that most adjustments are not large.
The R2 measure, detailed in Section 3.2, gives the relative increase in log-
likelihood under a uniform sampling model, after correcting for bias, with
1.0 indicating a perfect fit, and the score of 0.38 here indicating a significant
increase.

any genomic position. Figure 2 gives a schematic overview of the proposed
model.

We have so far ignored one complication: the RNA abundance that
we wish to estimate is not itself independent of the nucleotide sequence.
Notably, exonic DNA tends to be more GC-rich than intergenic DNA. If
background sequences are sampled uniformly from the genome. we run the
risk of incorrectly adjusting for biological sequence bias, rather than technical
sequence bias. To avoid this, we propose using paired training data. Each
foreground training sequence is paired with a background sequence taken
from a nearby position that is likely to have similar abundance and general
nucleotide composition. Alternatively, we could pair foreground samples
with background samples from within the same transcript, but we prefer to
avoid dependence on existing gene annotations.

The methods proposed by Hansen et al. (2010) and (Roberts et al.,
2011) also treat bias correction as a problem of estimating foreground
and background sequence probabilities. They differ primarily in how these
sequence probabilities are estimated. Li et al. (2010) estimate reweighting
coefficients (bi, in our notation) directly, given training data consisting of
long annotated, highly expressed transcripts.

2.2 Estimation
To estimate sequencing bias, we train a Bayesian network in which each
node represents a position in the sequence, relative to the read start, and

edges encode dependency between positions. Bayesian networks have been
applied to recognize motifs in nucleotide sequences in the past, in particular
in modeling splice sites (Cai et al., 2000; Chen et al., 2005) and transcription
factor binding sites (Ben-Gal et al., 2005; Grau et al., 2006; Pudimat et al.,
2005).

In our model, we do not rely on constraining the set of networks (e.g. to
trees), and instead approximate the NP-Hard problem of determining the
optimal network structure using a fast hill-climbing algorithm. Furthermore,
we train our model discriminatively; only parameters that are deemed
informative in discriminating between foreground and background sequences
are included in the model. We thus seek to train a model that reduces
bias, without including uninformative parameters that would only increase
variance.

2.2.1 Sampling The model is trained on n sequences, one half labeled as
foreground, the other background, sampled from the reference genome. To
obtain the foreground sequences, we take sequences surrounding (extending
20 nt to either side, by default) the start positions of a randomly sampled
set of n/2 aligned reads. To avoid the risk of the method being overfit to
reads deriving from a few highly expressed genes, we ignore duplicate reads,
which we define as two reads mapping to the same location in the genome.
The nucleotide sequence is taken from the genome, rather than the reads
themselves, allowing us to include positions outside of the read.

To obtain background training sequences, we randomly offset the positions
from which the foreground sequences were sampled. The offset is drawn from
a zero-mean Gaussian (with σ2 =10, by default), and rounded to the nearest
integer, away from zero. By using such a scheme, we attempt to mitigate the
effects of biological sequence bias, sampling positions that are more likely
to be biologically similar.

This procedure produces a training set of n sequences with accompanying
labels T ={(s1,x1),(s2,x2),...,(sn,xn)}. The label xi is binary, indicating
classification as background (xi =0) or foreground (xi =1).

2.2.2 Training To determine the structure and parameters of the Bayesian
network, we use a hill-climbing approach similar to the algorithm described
by Grossman and Domingos (2004). The network structure is determined by
greedily optimizing the conditional log-likelihood:

"=
n∑

i=1

logPr[xi|si]=
n∑

i=1

log
Pr[si|xi]Pr[xi]∑

x∈{0,1}Pr[si|x]Pr[x]

where Pr[x] is flat (i.e. Pr[x=0]=Pr[x=1]=0.5) since we sample
foreground and background positions equally.

As we will be estimating parameters and evaluating the likelihood on the
same set of samples, simply maximizing the likelihood would severely overfit
the training set. We thus penalize model complexity heuristically using the
Bayesian information criterion (Schwarz, 1978). Where m is the number of
parameters needed to specify the model, we maximize, "′ =2"−m logn.

Some benefit might be obtained from a more highly tuned complexity
penalty. However, since the model is trained greedily, additional parameters
will be decreasingly informative, and increasingly similar between
foreground and background. Adding more parameters will have little
effect. Only when m is allowed to grow exponentially does the prediction
become polluted by small deviations between thousands of uninformative
parameters.

At each step of the optimization procedure, every possible edge or position
addition, removal or edge reversal that produces a valid, acyclic network is
evaluated, and the alteration that increases the score "′ the most is kept.
This process is repeated until a local maximum is found, in which no
single alteration to the network will increase the score. Given the network
structure, the parameters are estimated directly from the observed nucleotide
frequencies in the training data.

The run time of the training procedure is further reduced in practice by
imposing the following two restrictions on the structure of the network, First,
the in-degree (i.e. number of parents) of any node must be less than some
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Fig. 4. The KL divergence compares the frequency of k-mers (here, for k =1 and k =4) surrounding the starts of aligned reads to the frequencies expected
under the assumption of uniform sampling from within exons. A large divergence indicates significant bias. Plotted here is the divergence from unadjusted
read counts as well as after adjusting read counts using each method.

3.1 Kullback–Leibler divergence
Plotting the nucleotide frequencies (Fig. 1), we observe an obvious
bias. To quantify the non-uniformity observed in these plots, we use
the symmetrized Kullback–Leibler (KL) divergence (Kullback and
Leibler, 1951).

If fx is the background frequency of a k-mer x, and f ′
x the observed

frequency, the KL divergence is computed as

Dk(f ,f ′)=
∑

x

(
fx log2(fx/f ′

x)+ f ′
x log2(f ′

x/fx)
)

where the sum is over all k-mers. This can be thought of as a
measure dissimilarity between two probability distributions. If fx
and f ′

x for a k-mer x are approximately equal, their log-ratio will be
approximately zero, leading to a small KL divergence (exactly zero,
when the distributions are equal). Conversely, very different k-mer
frequencies will result in a larger KL divergence.

When computing the KL divergence, there is a risk of the measure
being dominated by a small number of reads with many duplicates.
Yet, given the high coverage of the exons being tested, if duplicate
reads are excluded, it may not capture the full effect of bias
correction. To account for these opposing concerns, we adopt the
following method: all reads contained within the exon being tested
are ranked by the number of duplicates. We then exclude reads that
are ranked in the lower half, and count each read ranked in the upper
half only once, ignoring duplicates.

Under the assumption of uniform sampling, the set of reads
ranked in the upper half should not depend on sequence, and
we should expect the KL divergence to be low. We compute the
divergence by reweighting the read counts using the predicted bias
coefficient before ranking the reads, choosing those reads ranked
in the upper half of each exon, ignoring duplicate reads, and then
tallying frequencies of overlapping k-mers. The k-mer distribution
obtained is then compared to a background distribution obtained by
redistributing reads uniformly at random within their exons.

We repeated the procedure for k ∈ {1,2,3,4,5,6}. The results
of this analysis are plotted in Figure 4, for k =1 and k =4. The
remaining cases are plotted in Section 4 in Supplementary Material.

3.2 Poisson regression
In this comparison, we measure the uniformity of the data, or
more precisely how well the counts conform to a Poisson process.

The assumption of positional read counts following a Poisson
distribution is known to be a poor fit (Srivastava and Chen, 2010),
but measuring the improvement in the fit derived from correcting
for bias remains a principled and easily interpreted criterion. This
increase in uniformity is illustrated in Figure 2.

We perform maximum-likelihood fitting of two models. In the
null model, the Poisson rate is fixed for each test exon. That is, for
position j within exon i, the rate is λij =ai where ai is the parameter
being fit. For comparison, we then fit a model in which the rate is
also proportional to the predicted bias coefficients: λ′

ij =aibij .
If the null model has log-likelihood L, and the bias-corrected

model L′, a simple goodness of fit measure is the improvement in
log-likelihood [a statistic commonly known as McFadden’s pseudo-
coefficient of determination (McFadden, 1974)], defined as, R2 =
1−L′/L.

This measure can be interpreted as the improvement in fit over
the null model, with R2 =1 indicating a perfect fit, occurring when
the model being evaluated achieves a likelihood of 1. Smaller
number indicate an increasingly worse fit, with R2 =0 representing
no improvement over the null model, and R2 =0.5, for example,
indicating the model has a log-likelihood equal to half that of the
null model (a large improvement, corresponding to, for example, the
likelihood increasing over 100-fold if the initial log-likelihood was
−9.6, which is the mean per-position log-likelihood under the null
model). This measure has the added advantage that it can take on
values <0, indicating that the model has worse fit than the null model
(i.e. when adjusting read counts according the bias coefficients leads
to less uniform read coverage).

We compute R2 for each of the test exons, giving us a sense
of the variability of the effectiveness of each model. The results
of this analysis are plotted in Figure 5. To summarize each model
with a single number, we can examine the median R2 value, as
listed in Table 2. Our method shows a highly statistically significant
improvement in performance over other methods in all but one
comparison, in which the MART method performs equally.

3.3 qRT-PCR correlation
We used sequencing data previously published by Au et al.
(2010) to evaluate the effect bias correction has on correlation
to measurements made by TaqMan RT–PCR, made available by
the the Microarray Quality Control project (Shi et al., 2006).
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Fig. 5. For each of the 1000 test exons, we compute McFadden’s pseudo-
coefficient of determination R2, equivalent to the improvement in log-
likelihood under the bias-corrected model. The statistic is positive, and
increases as uniformity is increased, and negative when uniformity is
decreased. Marked with asterisks are methods over which the BN approach
showed a statistically significant improvement when applied to the same
data, according to a one-sided Wilcoxon signed-rank test. In each of those
marked, we observed P <10−23. Boxes are plotted to mark the 25, 50 and
75% quantiles, with whiskers extending to 1.5 times the interquartile range
(i.e. the span between the 25% and 75% quantiles), and dots marking more
extreme values.

Table 2. The median R2 goodness of fit statistic across test exons

BN MART GLM 7mer

Wetterbom 0.174 0.016 0.066 −0.079
Katze 0.280 0.243 0.158 0.033
Bullard 0.267 0.163 0.224 0.157
Mortazavi 0.240 0.210 0.197 0.091
Trapnell 0.289 0.289 0.248 0.138

The R2 statistic measures increased uniformity in read coverage, after correcting for
bias. Here the median R2 across the test exons is listed for each method and sample. A
higher R2 indicates a better fit. The highest value in each row is highlighted in bold.

The RNA-Seq data shows a pattern of bias similar to that seen
in the other samples sequenced on an Illumina platform (Section
6 in Supplementary Material). This evaluation does not rely on an
assumption that qRT-PCR is necessarily more accurate than RNA-
Seq-based quantification, only that qRT-PCR is not biased in the
same way as the RNA-Seq data.

To evaluate the efficacy of each of the bias correction methods
considered, we counted reads overlapping each gene, defining the
gene by the union of every transcript in release 60 of the Ensembl
gene annotations. Counts were then normalized by dividing by the

Table 3. The Pearson’s correlation coefficient r between log-adjusted read
counts and log-adjusted TaqMan values

Method Correlation

Unadjusted 0.6650∗∗

7mer 0.6680∗∗

GLM 0.6874∗∗

MART 0.6998∗

BN 0.7086

We estimated the statistical significance of the improvement in correlation using the
BN method over the other methods using a simple boostrap procedure. A bootstrap
sample is formed by sampling, with replacement, 648 genes from the original set of the
same size. The correlation is then computed for this set, using the adjusted count from
each method. We repeated this procedure one million times, and counted the number
of times each of the competing methods achieved a higher correlation than the BN
method. Those marked with a single asterisk achieved a higher correlation fewer than
1000 times, resulting in a P <10−3. Those marked with two asterisks achieved a higher
correlation in none of the bootstrap samples, indicating a P <10−6.

length of these genes. We then removed any genes with a read count
<10, or that did not correspond to a unique TaqMan probe.

Each method was trained in a manner identical to that used in the
analysis of Sections 3.1 and 3.2, but without restricting the training
data to the first eight chromosomes. After adjusting read counts
according to the predicted sequence bias, we computed the Pearson’s
correlation coefficient r between log read counts and log TaqMan
expression values, which are averaged across three replicates. These
correlations are listed in Table 3. Our method shows a statistically
significant increase in correlation compared with the other methods.

3.4 Robustness
Training our model on more reads leads to more accurate estimation
of bias, but an increasingly long training time. For example, in our
tests, fitting our model to 100 000 reads from the Mortazavi data,
training time was approximately 45 min, running on one core of a
3 GHz Intel Xeon processor. However, limiting the training to 25 000
reads leads to a model that is nearly as accurate while requiring
<4 min to train. A full discussion of this trade-off is provided in
Section 6 in Supplementary Material.

The quality of the solution depends also on two other parameters:
the standard deviation at which background sequences are sampled,
and the weight applied to the penalty term of the BIC, yet it is not
particularly sensitive to their values. (The median R2 goodness-of-
fit statistic used in Section 3.2 varied by <25% as these parameters
were varied over a range of 104. See Section 2 in Supplementary
Material.) The same is true of the pmax and dmax parameters, used
restrict the in-degree and edge distance of the model, respectively, in
order to control training time. Our tests show that these parameters
need only be greater than zero for an adequate model to be trained
for the Mortazavi data. In all our evaluation, no special tuning of
the parameters was performed, suggesting it can be used effectively
across datasets without any intervention.

Additionally, experimental and theoretical analysis suggest that
the procedure is very resistant to inclusion of extraneous parameters.
In Section 11 in Supplementary Material, we prove an upper bound
on the probability of our model predicting any bias, if the experiment
is in fact unbiased, showing that there very little risk in the applying
the method to an unbiased data set. In particular, if >10 000 reads are
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Fig. 3. The network structures learned on each of the datasets are displayed. Positions are relative to the read start, which is labeled 0. Hollow circles
indicate positions that were not included in the model, being deemed uninformative, given the other positions and edges. The number of parameters needed
to specify each model is listed in parenthesis below. Applied to data with less bias, a sparser model is trained, as evinced by the Wetterbom dataset. Note that
dependencies (i.e. arrows) tend to span a short distances, and nodes tend to have a small in-degree (i.e. have few inward arrows). In practice, we save time in
training by prohibiting very distant dependencies (>10, by default) or very high in-degrees (> 4, by default).

number pmax. Secondly, for all edges (i,j), |j− i|≤dmax for some number
dmax. This latter rule encodes the assumption that distant nucleotides are
effectively independent. We choose pmax =4 and dmax =10, as reasonable
default values (Section 2 in Supplementary Material).

Figure 3 shows examples of the structure learned when this procedure is
applied to several datasets, using 100 000 reads from each.

3 RESULTS
Since we cannot observe directly the underlying RNA abundance,
our evaluation strategy relies on testing three assumptions we make
of an ideal, unbiased RNA-Seq experiment.

(1) Positional nucleotide frequencies (as in Fig. 1), measured from
reads within exons, should not differ greatly from frequencies
measured by sampling uniformly within the same exons.

(2) Read counts across a single exon should follow,
approximately, a Poisson process.

(3) Adjusting for bias in RNA-Seq should increase the agreement
between RNA-Seq and another method of quantification.

Evident from Figure 2, the assumption of uniform read coverage
often does not hold in typical RNA-Seq datasets. Although the
bias corrected read counts across the exon pictured in this example
are visibly more uniform, we sought a simple, objective tests
that could be applied genome-wide. To this end, we used cross-
validation tests (i.e. methods were trained and tested on disjoint
subsets of the same RNA-Seq datasets) of a quantitative measure
of the increase in uniformity of nucleotide frequencies (Kullback–
Leibler divergence in Section 3.1) and increase in uniformity of
read coverage (Poisson regression in Section 3.2). Additionally, we
compare RNA-Seq-based estimate of gene expression to quantitative
real-time PCR (qRT-PCR) based estimates for the same genes,
showing increased correlation between the two methods after bias
correction (Section 3.3).

To evaluate the first two assumption, we applied our procedure
(labeled ‘BN’) as well as those of Li et al. (2010) (‘GLM’ and
‘MART’) and Hansen et al. (2010) (7mer), which are implemented
in the R packages mseq and Genominator, respectively, to four
publicly available datasets (Bullard et al., 2010; Mortazavi et al.,
2008; Trapnell et al., 2010; Wetterbom et al., 2010), as well as an
unpublished dataset of our own (Table 1).

Each method was trained on data taken from chromosomes 1–8
of the genome from which the reads were mapped (including
chromosomes 2a and 2b of the Chimpanzee genome). For
evaluation, we drew a set of long, highly expressed exons from the
remaining chromosomes. In particular, for each reference sequence,
beginning with the set of exons annotated by Ensembl release 60
(Hubbard et al., 2009), we removed any exons with known alternate
splice sites, then chose the top 1000 exons by read count, restricting
ourselves to those at least 100 nt long.

The differences in the methods being tested necessitated training
procedures unique to each. The total number of reads used to train
each method is listed in Section 3 in Supplementary Material, and
below we describe the procedure used for each.

Li et al. (2010) recommends that their MART and GLM models
be trained using the 100 most abundant genes. We used 1000 exons
from chromosomes 1–8, otherwise chosen in a manner identical to
that which was used to select the test exons. Both the GLM and
MART models were trained considering the initial read position
and 20 nt upstream and downstream, and otherwise using default
parameters.

Hansen et al. (2010) recommends using all the reads to estimate
heptamer frequencies used by their model. The training procedure
works by simple tallying of frequencies. The implementation of this
model in the Genominator package uses a great deal of memory, and
we were unable to train with the volume of data we wished, so we
reimplemented the model and trained it on all of the reads aligned
to chromosomes 1–8.

We evaluated several variations of the heptamer model. The
suggested method involved averaging the frequencies of the first
two heptamers of each read. Yet, we found that in every case,
this performed worse than simply counting the frequencies of
the initial heptamer, and thus we report only the latter. The
background frequencies are estimated from positions 18–23 in each
read.

Our own method was trained on the 100 000 randomly selected
reads from chromosomes 1–8, considering the initial read position
and 20 nt upstream and downstream.

All datasets were mapped using Bowtie (Langmead et al., 2009)
using default parameters against, respectively, the hg19, mm9,
rheMac2 and panTro2 genome assemblies obtained from the UCSC
Genome Browser (Karolchik et al., 2008).
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Given: r-sided die, with probs p1...pr of each face.  Roll it n=10,000 times; observed 
frequencies = q1, …, qr, (the MLEs for the unknown qi’s).  How close is pi to qi?

Fancy name, simple idea:  H(Q||P) is just the expected per-sample contribution to 
log-likelihood ratio test for “was X sampled from H0: P vs H1: Q?”
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how different are two distributions?
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… and after a modicum of algebra: 

… which empirically is a good approximation:

You could do this, too: 
LLR of error declines 

with size of training set



… and so the probability of falsely inferring “bias” from an 
unbiased sample 
declines rapidly with 
size of training set 
(while runtime rises):
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summary

Prob/stats we’ve looked at is actually 
useful, giving you tools to understand 
contemporary research in CSE (and 

elsewhere).

I hope you enjoyed it!
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And One Last Bit of  Probability Theory
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See also:
    http://mathforum.org/library/drmath/view/55871.html
    http://en.wikipedia.org/wiki/Infinite_monkey_theorem


