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14. hypothesis testing



competing hypotheses

Does smoking cause lung cancer?

(a) No; we don’t know what causes cancer, but
smokers are no more likely to get it than non-
smokers

(b) Yes; a much greater % of smokers get it

Notes: (1) even in case (b), “cause” is a stretch, but for
simplicity, “causes” and “correlates with” will be
loosely interchangeable today. (2) we really don’t
know, in mechanistic detail, what causes lung cancer,
nor how smoking contributes, but the statistical
evidence strongly points to smoking as a key factor.



competing hypotheses

Programmers using the Eclipse IDE make fewer errors
(a) Hooey. Errors happen, IDE or not.

(b) Yes. On average, programmers using Eclipse
produce code with fewer errors per thousand
lines of code



competing hypotheses

Black Tie Linux has way better web-server throughput
than Red Shirt.

(a) Ha! Linux is linux, throughput will be the same

(b) Yes. On average, Black Tie response time is 20%
faster.



competing hypotheses

This coin is biased!

(a) “Don’t be paranoid, dude. It’s a fair coin, like any
other, P(Heads) = [/2”

(b) “Wake up, smell coffee: P(Heads) = 2/3, totally!”



competing hypotheses

How do we decide!
Design an experiment, gather data, evaluate:

In a sample of N smokers + non-smokers, does %
with cancer differ! Age at onset! Severity!?

In N programs, some written using IDE, some not, do
error rates differ?

Measure response times to N individual web
transactions on both.

In N flips, does putatively biased coin show an unusual
excess of heads! More runs! Longer runs!

A complex, multi-faceted problem. Here, emphasize evaluation:
What N? How large of a difference is convincing?



hypothesis testing

General framework: Example:
|. Data 100 coin flips
2. Ho — the “null hypothesis™ P(H) = 1/2
3. Hi — the “alternate hypothesis”  P(H) = 2/3
4. A decision rule for choosing “if #H < 60, accept
between Ho/H)| based on data null, else reject null”

5. Analysis: What is the probability PH <60 1/2)="
that we get the right answer? P(H > 60]2/3)=1

By convention, the null hypothesis is usually the “simpler” hypothesis, or “prevailing
wisdom.” E.g., Occam’s Razor says you should prefer that, unless there is strong
evidence to the contrary.



error types

----------------------------------------

decision
> threshold
:
) 4
O !
e = B
0.5 0.6 0.67  observed fract of heads—
Type |l error:false accept; Type | error: false reject;
accept Ho when it is false. reject Ho when it is true.
B = P(type Il error) = P(type | error)

Goal: make both &, f small (butit’s a
tradeoff; they are interdependent).
X < 0.05 common in scientific literature.




decision rules

Is coin fair (1/2) or biased (2/3)! How to decide! ldeas:

|. Count: Flip 100 times; if number of heads observed

is < 60, accept Ho
or <59 or <61l .. = different error rates

2. Runs:  Flip 100 times. Did | see a longer run of
heads or of tails!?

3. Runs:  Flip until | see either 10 heads in a row
(reject Ho) or 10 tails is a row (accept Ho)

4. Almost-Runs: As above, but 9 of 10 in a row
5. ...

Limited only by your ingenuity and ability to analyze.
But how will you recognize best &, 3 ?



likelihood ratio tests

A generic decision rule: a“Likelihood Ratio Test”

L(xl,a:g,...,xn ’ H1) < ¢ accept Hy

o = ¢ arbitrary
L(CU1,$27 ceey ’ HO) > C reject HO

E.g.:
C

|:accept Ho if observed data is more likely under
that hypothesis than it is under the alternate,
but reject Ho if observed data is more likely
under the alternate

c = 5:accept Ho unless there is strong evidence that
the alternate is more likely (i.e.5 x)

Changing the threshold c shifts &, B, of course.



example

Given: A coin, either fair (p(H)=1/2) or biased (p(H)=2/3)
Decide: which

How!?! Flip it 5 times. Suppose outcome D = HHHTH
Null Model/Null Hypothesis My: p(H) = 1/2

Alternative Model/Alt Hypothesis M,: p(H) = 2/3
Likelihoods:
P(D | M) = (172) (172) (112) (1/2) (1/2) = 1/32
P(D | M,) = (2/3) (2/3) (2/3) (1/3) (2/3) = 16243

Likelihood Ratio: 22 M1) _ 16/243 _ 512 ~ 1]
p(DIM,) 1/32 243 '

l.e., alt model is = 2.1x more likely than null model, given data



simple vs composite hypotheses

A simple hypothesis has a single, fixed parameter value
E.g.. P(H) = 1/2

A composite hypothesis allows multiple parameter
values

E.g.; P(H) > 1/2

Note that LRT is problematic for composite hypotheses; which
value for the unknown parameter would you use to compute its
likelihood?



Neyman-Pearson lemma

The Neyman-Pearson Lemma

If an LRT for a simple hypothesis Ho versus a simple
hypothesis H| has error probabilities &, B, then any test

with type | error &’ < o must have type Il error B’ >
(and if & < &, then B’ > B)

In other words, to compare a simple hypothesis to a
simple alternative, a likelihood ratio test will be as good
as any for a given error bound. E.g,



example

Ho: P(H) = 1/2 Data: flip 100 times

Hi:P(H) = 2/3 | Decision rule: Accept Hop if #H < 60
x =P#HH > 60| Ho) = 0.018

B=P#HH < 60| H)) = 0.097

L(59 heads | Hy) . L(60 heads | Hy) Y L(61 heads | H;)

~ 1.4 ~ 2. ~ 0.
L(59 heads | Hy) > L(60 heads | Hy) > L(61 heads | Hy) o
L(60 heads | H dbi 100,2
(60 heads | Hy) _ !nom(60, 00,2/3) ~ 9 835788
L(60 heads | Hy)  dbinom(60,100,1/2)
i “R” pmf/pdf functions
L heads | H d 60,100 -2/3,,/100-2/3-1/3

L(60 heads | Hy) ~ dnorm(60,100 - 1/2, /100 - 1/2 - 1/2) 4



example (cont.)

Ho (fair) True
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some notes

Log of likelihood ratio is equivalent, often more
convenient

add logs instead of multiplying...
“Likelihood Ratio Tests”: reject null if LLR > threshold

LLR > O disfavors null, but higher threshold gives
stronger evidence against

Neyman-Pearson Theorem: For a given error rate, LRT
is as good a test as any (subject to some fine print).



summary

Null/Alternative hypotheses - specify distributions from which data
are assumed to have been sampled

Simple hypothesis - one distribution

E.g.,“Normal, mean = 42, variance = [2”

Composite hypothesis - more that one distribution

E.g.,“Normal, mean > 42, variance = [2”
Decision rule;“accept/reject null if sample data...”; many possible
Type | error:false reject/reject null when it is true
Type 2 error:false accept/accept null when it is false

= P(type | error), B = P(type 2 error)

Likelihood ratio tests: for simple null vs simple alt, compare ratio of
likelihoods under the 2 competing models to a fixed threshold.

Neyman-Pearson: LRT is best possible in this scenario.



Significance Testing

B&T 9.4



(/’&\ (binary ) hypothesis testing

ng 2 competing hypotheses Ho (the null), H, (the alternate)
E.g., P(Heads) = /2 vs P(Heads) = %5
Gather data, X
Look at likelihood ratio ::(XlH') ; isit>c!

Ho)
Type | error/false reject rate «;

Type Il error/false non-reject rate 3
Neyman-Pearson Lemma: no test will do better (for simple hyps)

Often the likelihood ratio formula can be massaged into an

equivalent form that’s simpler to use, e.g.
“Is #Heads > d?”

Other tests, not based on likelihood, are also possible, say
“Is hyperbolic arc sine of #Heads in prime positions > 42?”
but Neyman-Pearson still applies...



significance testing

What about more general problems, e.g. with composite

hypotheses!?
E.g., P(Heads) = ' vs P(Heads) not = />

NB: LRT won’t work — can’t
calculate likelihood for “p+'/2"

Can | get a more nuanced answer than accept/reject?

General strategy:
Gather data, X, Xy, ..., Xn

Choose a real-valued summary statistic, S = h(Xj, Xa, ..., X»)

Choose shape of the rejection region,e.g.R = {X | S > c}, c t.b.d.

Choose significance level & (upper bound on false rejection prob)

Find critical value c, so that, assuming Ho, P(5>c) <

No Neyman-Pearson this time, but (assuming you can do or
approximate the math for last step) you now know the significance

of the result
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example: fair coin or not?

| have a coin. Is P(Heads) = 2 or not?

General strategy: For this example:

Gather data, X, Xy, ..., X,

Choose a real-valued summary
statistic, S = h(X|, Xy, ..., X»)

Choose shape of the rejection
region,e.g.R = {X | S > c}, c t.b.d.

Choose significance level & (upper
bound on false rejection prob)

Find critical value c, so that,
assuming Ho, P(S>c) < &

Flip n = 1000 times: X|, ..., Xn

Summary statistic, S = # of
heads in X, Xy, ..., X,

Shape of the rejection region:
R ={Xs.t.[S-n/2]| > c}, c t.b.d.

Choose significance level
x =0.05

Find critical value c, so that,
assuming Ho, P(|S-n/2| > ¢) < &

Given Ho, (S-n/2)/sqrt(n/4) is = Norm(0,1), so ¢ = 1.96%1/250 = 31

gives the desired 0.05 significance level.

E.g., if you see 532 heads in 1000 flips you can reject Ho at the 5%

significance level
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p-values

The p-value of an experiment is:

p = min { & | Ho would be rejected at the « significance level }
l.e., observed S is right at the critical value for @ = p
Why!?

Shows directly how much leeway you have w.r.t. any desired
significance level.

Avoids pre-setting the significance level (pro/con)
Examples:

531/1000 heads has a p-value of 0.0537, > «
532/1000 heads has a p-value of 0.0463, < « nonrandom:

550/1000 heads has a p-value of 0.00173, « itis oritisn't

/
It is not the probability that the null hypothesis is true

It’s the probability of seeing data this extreme, assuming null is true
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example: is the mean zero or not (02 known)?

Suppose X ~ Normal(uy, 0?%), and G2 is known.

Ho:py =0 s Hi:p+0
Data: X, Xo,..., X,

Summary statistic — want something related to mean; how about:

X+ Xot -+ Xy
B o\/n

(assuming Ho, 2Xi has mean = 0, var = n 0%,s0 S ~ N(0, |
g

S

If we make rejection region R = { X | |S| > 1.96 }, this will reject
the null at the & = 0.05 significance level. l.e., assuming p = 0, an
extreme sample with |S|>1.96 will be drawn only 5% of the time.

Similarly, if we observe S = 2.5, say, then p-value = 0.0124
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sec., 9.1

n- |

he t-tables for the CDF ¥n_1(2) of the .tjdigtfi.bution with a given number

Classical rarameter IrLSvliratiorn

/2.

i 0.100 0.050 0.025 0.010 0.005 0.001
1 3.078 6.314 12|71 31.82 63.66 318.3

2 || 1.886 2920 4.403 6.965 9.925 22.33

3 1.638 2.353 3.182 4.541 5.841 10.21

1 1.533 2.132 2976 3.747 4.604 7.173

5[ 1476 2.015 2471 3365 4.032 5.893

6 || 1.440 1943 2. 3143 3.707 5.208

7|l 1415 1.895 2. 2.998 3499  4.785

8 || 1.397 1.860 2.896 3.355 4.501
S 2.821 3.250 4.297
10 || 1.372 1812 2. 2.764 3.169 4.144
11 || 1.363 1796 2. 3.106  4.025
12 || 1.356 1.782 2. 3.055  3.930
13 | 1350, 1.77L...2 3.012  3.852
14 || 1.3¢5 1761 2. 2,977  3.787
15 || 1.341 1753 2. 2.947  3.733
20 || 1.325 1.725 2.845 3.552
0y 1310  1607,(2.042 )2457 2750  3.385
60 || 1.296 1671 2. : 2.660  3.232
120 [| 1.289 1658 1980 2358 2617 3.160
oo |l 1.282 1645 1960 2326 2.576 3.090

473
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example

Ibsoff.com sells diet pills. 10 volunteers used them for a
month, reporting the net weight changes of:

x <- ¢(-1.5, @, .1, -0.5, -.25, 0.3, .1, .05, .15, .05)

> mean(x)
1Go.15>

Ibsoff proudly announces “Diet Pill Miracle!” —

> cat("stddev=",sd(x), "tstat=",sum(x)/sd(x)/sqrt(10))
stddev= 0.5244044 tstat= -0.904534

> t.test(x)

t = -0.9045, df = 9, p-value = 0.3893

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval: -0.5251363 0.2251363

What do you think?
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CAN MY BOYFRIEND
COME ALONG?

\

I™M NOT YOUR
BOYFRIEND!

[ You ToTALY ARE.

TM CASVALLY
DATING A NUMBER

OF PEOPLE.

K

BUT YOU SPEND TWICE AS MUCH
TIME WITH ME AS WITH ANYONE.
ELSE. IM ACLEAR OUTUER.

HH -
e

YOUR MATH IS
IRREFUTABLE.

FACE IT-IM
YOUR STAMISNCALLY
SIGNIFICANT OTHER.

s




Something Completely
Different



R v colbts055
ORIGINAL PAPE ’(\“"‘\

Gene expression t\\e sss publication January 28, 2012
A new approach to bias ¢ S Aa‘eq

Daniel C. Jones'+*, W"" 2 Peng? and Michael G. Katze*

"Department of Cr O ng, University of Washington, Seattle, WA 981985-2350,

2Departme orsity of Washington, Seattle, WA 98195-5065, SFred Hutchinson Cancer
Research O\L, .09 and 4Department of Microbiology, University of Washington, Seattle, WA
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Cells make RNA. Biologists “read” it
— a (biased!) random sampling process



Unadjusted

The bad news: random fragments are not so uniform.

does this look like a
300 - uniform random
v sample!?
C 200-
-
S MJLL
0- LJ jlhhlliuLthm luaes .

Part of one gene

Apoa2 >———>——>—>—>—> |
| | | |
chr1 173,156,174 173,156,274 173,156,374 173,156,474




The bad news: random fragments are not so uniform.

- does this look like a
O 300 - uniform random
0 9 sample?

=S5 C 200-

S 3

@© &) 100 -

5 Lo o il

D 0- uj.l.hhui...;LLh.l N T

not perfect,
300 - but better

200 -

100 -
0- biliods s Hhi‘mu__

Apoa2 >—>—>—>—>—>—>—>—> I

Adjusted
Counts

The Good News: we can (partially) correct the bias
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Kullback-Leibler
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Fitting a model of the sequence surrounding read starts
lets us predict which positions have more reads.

Dataset

== \Netterbom
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=== Bullard
Trapnell



you know
this

E[x;|s;]=N Pr[m;|s;]=N Pr[m;]=E][x;]
Fro
_ Prlsi{m;]Pr[m;]

Bayes’ rule,
Pr[m;|s;] =

This suggests a natural scheme in which observations may be reweighted
to correct for bias. First, define the sequence bias b; at position i as b; =
Pr[s;]/Pr[s;|m;].

Now, if we reweight the read count x; at position i by b;, we have,

E[b;x;|s;]1="Db;E[x;|s;]

= Nb; Pr[m;|s;]
e . you could
_  Prlmilsi1Prlsi] ou o
Pr(si|m;]
=NPr[m;]
=E[x;]

Thus, the reweighted read counts are made unbiased.



(@) sample foreground sequences

| —
| —
——

*ATCTAAGCGTCT CCCTTGAGGGCCTAGT CCATAAAT @ ¢« ¢

T

(b) sample background sequences

CATCTAACTCTCCCTTGAGGEGCGCTAGT CCAT AARAT @ ¢ ¢

.
(c) train Bayesian network
- = _ - =
(d) predict bias
3 1.0-
D 05-
2 8 WWWWMMMWWW
S -1.0-

O

adjust read counts
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Counts

RZ2=0.38

Adjusted Unadjusted

Counts




Wetterbom
(282 parameters)

you could

optimizing the conditional log-likelihood: do this:

/ somewhat

like EM

- ! Pr(s;|x;]Prlx;]
{ = log Prx;|si]= log LI ;
,.; o ; > veto.1y Prlsi|xIPrlx]




Result - more uniform

vau
|
— Method
— BN ———
————————————— — MART
— GLM
7mer
Unadjusted
N
Il
S



Result - more uniform
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R2

* = p-value < 1023

/

you could do this: a
hypothesis test “Is
BN better than X?




some questions

How does the amount of training data effect accuracy
of the resulting model?

What is the chance that we will learn an incorrect
model? E.g., learn a biased model from unbiased input!

Wetterbom
(282 parameters)
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how different are two distributions?

Given: r-sided die, with probs pi...pr of each face. Roll it n=10,000 times; observed
frequencies = qy, ..., qr, (the MLEs for the unknown qi’s). How close is pi to gi!

Kullback-Leibler divergence, also known as relative entropy, of Q with respect to P is defined as
H(QIIP) Z qi ln

where g; (p;) is the probability of observing the i event according to the distribution Q (resp.,
P), and the summation is taken over all events in the sample space (e.g., all k-mers). In some
sense, this is a measure of the dissimilarity between the distributions: if p; ~ g; everywhere,
their log ratios will be near zero and H will be small; as g; and p; diverge, their log ratios will

deviate from zero and H will increase. o

Fancy name, simple idea: H(Q||P) is just the expected per-sample contribution to

log-likelihood ratio test for “was X sampled from Ho: P vs H: Q?”
So, assuming the null hypothesis is false, in order for it to be rejected with say, 1000 : 1
odds, one should choose m to be inversely proportional to H(Q||P):

mH(Q||P) > In 1000
. In 1000
— H(QIIP)

you
could
do this
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... and after a modicum of algebra:
r —1 You could do this, too:
<«—— LLR of error declines

EIH(QIIP)] = —— LR of error declines
Wi SiZe Ot tralning se

... which empirically is a good approximation:

Relative Entropy, wrt Uniform, of Observed n balls in r bins

Each Circle is mean of 100 trials; Stars are theoretical estimates for n/r >= 1/4.
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Median Goodness of Fit

... and so the probability of falsely inferring “bias” from an

unbiased sample

declines rapidly with
size of training set
(while runtime rises)

Log10 Probability of Non-empty Model

10 10
Log10 Number of reads

6549 sec.

you could do
this, too: more
algebra (albeit
clever)

1077
Number of Reads

Figure 8: Median R? is plotted against training set size. Each point is additionally labeled with
the run time of the training procedure.
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summary

Prob/stats we’ve looked at is actually

useful, giving you tools to understand

contemporary research in CSE (and
elsewhere).

| hope you enjoyed it!
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And One lLast Bit of Probability Theory



GET FUZzY

INFINITE MONKeY \&O&&E\TSAW
WRITERS, ONE WiLL
ACCIDENTALY TYPE

THING LATELY. .
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WELL, THE WHOLE THEZRY
IS FLAWED. “INFINITE”

OVER & MONKEYS AND
OU’Re RUNNING INTO
DISCIPLINE AND

IS TOO MANY MONKETS.

HYGIENE (SSUES, |

by Darby Conley

AND WHO'S GONNA READ INFINITE
MONKeY SCRIPTS? SoME CHIMP
COULD HAVE WRITTEN THE NEXT
DA VINC\ CODE, BUT AMEW/SFLASH:
HE’S EATING THAT SCRIPT BeFcRe
U EVER SeE (T,
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HERE'S WHAT YoU Do
YU BUY A $2 BAG
OF NUTS. YOU GO TRAP
YOURSELE SOME
SQUIRRELS...
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YU PUT THEM ON WCRD
PROCESSORS -- WITH

SPELLCHECK -- AND
YQJ SHOOT FoR A “TWO
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YOU PockeT THe
INFINITE MONKEY
SELL THE SCRIPT,
AND RETIRE TO

See also:

So Now 1T’S FINITE

SQUIRRELS AT WoRD NEVER

PROCESIRS? ...I'M  / MIND. OV
ST LOsT, R GoT TWo

DoLARs?

http://mathforum.org/library/drmath/view/5587 | .html
http://en.wikipedia.org/wiki/Infinite_monkey theorem
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