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the law of  large numbers & the CLT
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sums of  random variables

If X,Y are independent, what is the distribution of  Z = X + Y ?

Discrete case:

  pZ(z) = Σx pX(x) • pY(z-x) 

Continuous case:

fZ(z) = ∫-∞   fX(x) • fY(z-x) dx

W = X + Y + Z ?   Similar, but double sums/integrals

V = W + X + Y + Z ?   Similar, but triple sums/integrals
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+∞

y = z - x



example

If X and Y are uniform,  then Z = X + Y is not; it’s triangular:

Intuition: X + Y ≈ 0 or ≈ 1 is rare, but many ways to get X + Y ≈ 0.5
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moment generating functions

Powerful math tricks for dealing with distributions

We won’t do much with it, but mentioned/used in book, so a very 
brief introduction: 

The kth moment of r.v.  X is E[Xk];  M.G.F.  is M(t) = E[etX]
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mgf  examples

An example:

MGF of normal(μ,σ2) is exp(μt+σ2t2/2)

Two key properties:

1. MGF of sum independent r.v.s is product of MGFs:

MX+Y(t) = E[et(X+Y)] = E[etX etY] = E[etX] E[etY] = MX(t) MY(t)

2. Invertibility: MGF uniquely determines the distribution.

e.g.: MX(t) = exp(at+bt2),with b>0, then X ~ Normal(a,2b)

Important example: sum of normals is normal:

              X~Normal(μ1,σ1
2)   Y~Normal(μ2,σ2

2)   

MX+Y(t) = exp(μ1t + σ12t2/2) • exp(μ2t + σ22t2/2)

             = exp[(μ1+μ2)t + (σ12+σ22)t2/2]

So X+Y has mean (μ1+μ2), variance (σ12+σ22) (duh) and is normal!
(way easier than slide 2 way!)
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“laws of  large numbers”

i.i.d. (independent, identically distributed) random vars 

    X1, X2, X3, …

Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi]

So limits as n→∞ do not exist (except in the degenerate case 
where μ = σ2 = 0;  note that if μ = 0, the center of the data 
stays fixed, but if σ2 > 0, then the spread grows with n).
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weak law of  large numbers

i.i.d. (independent, identically distributed) random vars 

    X1, X2, X3, …

Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi]

Consider the sample mean:
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The Weak Law of Large Numbers: 
    For any ε > 0, as n → ∞



weak law of  large numbers

For any ε > 0, as n → ∞

Proof: (assume σ2  < ∞)

By Chebyshev inequality,
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n→∞



strong law of  large numbers

i.i.d. (independent, identically distributed) random vars 

    X1, X2, X3, …

Xi has μ = E[Xi] < ∞

Strong Law ⇒ Weak Law (but not vice versa)

Strong law implies that for any ε > 0, there are only a finite 
number of n satisfying the weak law condition 
(almost surely, i.e., with probability 1)
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weak vs strong laws

Weak Law:

Strong Law:

How do they differ? Imagine an infinite 2d table, whose rows are indp 
repeats of the infinite sample Xi.  Pick ε.  Imagine cell m,n lights up if 
average of 1st n samples in row m is > ε away from μ.  

WLLN says fraction of lights in nth column goes to zero as n →∞.  It does 
not prohibit every row from having ∞ lights, so long as frequency declines.  

SLLN says every row has only finitely many lights (with probability 1).
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sample mean → population mean
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sample mean → population mean
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another example
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another example
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another example
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the law of  large numbers

Note: Dn = E[ | Σ1≤i≤n(Xi-μ) | ] grows with n, but Dn/n → 0

Justifies the “frequency” interpretation of probability

“Regression toward the mean”

Gambler’s fallacy:  “I’m due for a win!”

“Swamps, but does not compensate”

“Result will usually be close to the mean”

    
Many web demos, e.g. 
  http://stat-www.berkeley.edu/~stark/Java/Html/lln.htm
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normal random variable

 X is a normal random variable   X ~ N(μ,σ2)
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the central limit theorem (CLT)

i.i.d. (independent, identically distributed) random vars

   X1, X2, X3, …

Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi] < ∞
As n → ∞, 

  

Restated:  As n → ∞,
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Note: on slide 5, showed sum of normals is exactly normal.  Maybe not a surprise, 
given that sums of almost anything become approximately normal...
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CLT applies even to whacky distributions
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CLT in the real world

CLT is the reason many things appear normally distributed
Many quantities = sums of (roughly) independent random vars

Exam scores:  sums of individual problems
People’s heights: sum of many genetic & environmental factors
Measurements: sums of various small instrument errors
...
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Human height is 
approximately normal.

Why might that be 
true?  

R.A. Fisher (1918) 
noted it would follow 
from CLT if height 
were the sum of 
many independent random effects, e.g. many genetic factors (plus 
some environmental ones like diet). I.e., suggested part of mechanism 
by looking at shape of the curve.

in the real world…
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rolling more dice

 Roll 10 6-sided dice

 X = total value of all 10 dice
 Win if:  X ≤ 25   or  X ≥ 45
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summary

Distribution of X + Y: summations, integrals (or MGF)

Distribution of X + Y ≠ distribution X or Y in general

Distribution of X + Y is normal if X and Y are normal               (*)

(ditto for a few other special distributions)

Sums generally don’t “converge,” but averages do:

Weak  Law of Large Numbers

Strong Law of Large Numbers

Most surprisingly, averages all converge to the same distribution:  

the Central Limit Theorem says sample mean → normal
[Note that (*) essentially a prerequisite, and that (*) is exact, whereas CLT is approximate]
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