CSE 312, 2012 Autumn, W.L. Ruzzo
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continuous random variables

Discrete random variable: takes values in a finite or countable
set, e.g.
X € {l,2, ..., 6} with equal probability

X is positive integer i with probability 2

Continuous random variable: takes values in an uncountable
set, e.g.
X is the weight of a random person (a real number)
X is a randomly selected point inside a unit square
X is the waiting time until the next packet arrives at the
server



pdf

f(x): R—=R, the probability density function (or simply “density”)

N

Require: l.e., distribution is:
f(x) = 0, and < nonnegative, and
[2f(x) dx = | «— normalized,

just like discrete PMF



cdf

F(x): the cumulative distribution function (aka the “distribution”)

R R
A /¥_

a b
F(a) = P(X < a) (Area left of a)

P(a< X =< b) =F(b) - F(a) (Area between a and b)

A key relationship:
f(x) = 2 F(x),since F(a) = [? f(x) dx,



densities

Densities are not probabilities; e.g. may be > |
P(X =a) = limg-o P(a-€e < X < a) =F(a)-F(a) =0

l.e., the probability that a continuous random variable falls at a
specified point is zero

Pa-&2<X=<a+¢g/2)=

Fa + €/2) - F(a - €12)

S
“—>

~ E e f(a) a-&/2 a ateg/2

l.e., The probability that it falls near that point is proportional to the
density; in a large random sample, expect more samples where density
is higher (hence the name “density”).



sums and integrals; expectation

Much of what we did with discrete r.v.s carries over almost
unchanged, with 2.... replaced by [...dx

E.s.
For discrete r.v. X, E[X] = 2, xp(x)
For continuous r.v. X, FE[X] :/ z- f(x)dz
Why?

(a) We define it that way

(b) The probability that X falls “near” x, say within xtdx/2, is =f(x)dx,
so the “average” X should be = 2 xf(x)dx (summed over grid
points spaced dx apart on the real line) and the limit of that as

dx—0is [xf(x)dx



example

¥

1 forO0<ax<1
elsewhere

[ s

it a <0 - 0

f(x)

F(x)

I 2

a if0<a<1 (sincea= [ ldx)

1 ifl<a

/_O:Oa:f(a:)da::/ola:da:: ‘%2

1

1
g 2




properties of expectation

Linearity

E[aX+b] = aE[X]+b
still true, just as
for discrete

E[X+Y] = E[X]+E[Y]

Functions of a random variable

E[g(X)] = fg(X)f(X)dX just as for discrete,

but w/integral



variance

Definition is same as in the discrete case
Var[X] = E[(X-M)?] where Y = E[X]

|dentity still holds:
Var[X] = E[X?] - (E[X])? proof “same”



example

1 for0<x<1 |
Let — f(x)
: f (x) { 0 elsewhere i;}

If F(x)

1

o0 1 31
27 _ 2 _ 2 g — L _1
El X = /ooa:f(:c)dfp—/oxdx— 3|73
Var[X] = E[X?] — (E[X])? =32 — 3 =75 (0c~0.29)



continuous random variables: summary

Continuous random variable X has density f(x), and

Pr(angb):/bf(a:)da:

E|X] :/_OO:E-f(a:)dx



uniform random variables

X ~ Uni(a,B) is uniform in [&,B] f(z) = {

(
g5 =€ [a,f]
0 otherwise

The Uniform Density Function Uni(0.5,1.0)
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uniform random variables

X ~ Uni((X,B) is uniform in [(X’B] - The Uniform Density Function Uni(0.5,1.0)

- XL 87

0 otherwise

f(x)

b b—a
Pr(angb):/ f(x)dr =
a I 6 o Yes, you should

if x<a<b=<p: review your basic
calculus; e.g., these

2 integrals would

/OO o+ /6 be good practice.




uniform random variable: example

X ~ Uni(a,B) is uniform in [¢x,f]

1 reo
fz) = | Ba TElS

O otherwise

You want to read a disk sector from a 7200rpm disk drive.
Let T be the time you wait, in milliseconds, after the disk

head is positioned over the
correct track, until the desired
sector rotates under the head.

T ~ Uni(0, 8.33)

Average Wait! 4.|7ms

14



waiting for “events”

Radioactive decay: How long until the next alpha particle?

Customers: how long until the next customer/packet arrives at the
checkout stand/server?

Buses: How long until the next #71 bus arrives on the Ave!

Yes, they have a schedule, but given the vagaries of traffic, riders with-bikes-and-baby-
carriages, etc., can they stick to it?

Assuming events are independent, happening at some fixed average

rate of A per unit time — the waiting time until the next event is
exponentially distributed (next slide)

15



exponential random variables

X ~ Exp(N\)

The Exponential Density Function
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exponential random variables

X ~ Exp(A)
e AT > 0
(@) = {oe i <0
EX] =1 Var[X] = 15

Pr(X >1t) =e M = 1-F()

Memorylessness:

Pr(X >s+4+t]| X >s5)=Pr(X >t)

Assuming exp distr, if you’ve waited s minutes, prob of waiting t more is exactly same as s =0



examples

Gambler’s fallacy:“I’'m due for a win”

Relation to the Poisson: same process, different measures:

Poisson: how many events in a fixed time; A is avg # per unit time;
Exponential: how long until the next event I/\ is mean wait

Relation to geometric: Geometric is discrete analog:

How long to a Head, | flip per sec, prob p vs
How long to a Head, 2 flips per sec, prob p/2, vs }AII have same mean
How long to a Head, 3 flips per sec, prob p/3, vs

Limit is exponential with parameter |/p see also B&T fig 3.8

18



interlude

A brief message from
the Math SuperPAC

(This message not approved by any political candidate ...)
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KCTS 9 Washington Poll okctso|w

Governor

If the election for Governor of Washington were held today, would you vote for (ROTATE
NAMES) Jay Inslee, who prefers the Democratic Party, or Rob McKenna, who prefers
the Republican Party?

Registered Voters Likely Voters

Inslee — certain 39.5% 41.9%

Inslee — could change 5.4% 4.4%
Undecided — lean Inslee 2.3% 2.4%
Undecided 7.4% 5.8%
Undecided — lean McKenna 1.8% 1.0%
McKenna — could change 3.7% 3.6%
McKenna — certain 40.0% 41.0%

Total — Inslee 47.2% 48.7% <«——
Total — McKenna 45.5% 45.6% <—

632 likely voters: +/- 3.9%

722 registered voters: +/- 3.6%(632 likely voters: +/- 3.9%)Oct 18-31, 2012 KCTS9.0org/vote2012
http://kcts9.org/sites/default/files/kcts9wapoll_oct3 |.pdf




P(X=k)

polling (take 1)

0.000 0.015 0.030

we’ll see this more formally later

Many registered voters
Suppose a fraction p of them will vote for Inslee

Call 632 of them at random, ask who they like
Suppose 48.7% (308) say “Inslee,’ [& 45.67 (288) McKenna]

Binomial random variable, mean pn, variance 02 = p(l-p)n

If the gap between M & | is greater than, say, 20, we can be
reasonably sure the poll difference is “real,” but prediction is

sketchy if the gap is smaller. l.e.,"margin of error” is ~ 20
= p(I-p)n = 156.8 —p(I -p)n = 157.9

PMF for X1 ~ Bin(632,0.487), X2 ~ Bin(632,0.456)
= V(p(1-p) = 125 Vip(l-pm) = 126

I A I A I I
200 250 288 300 308 350 400
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f(x)
00 01 02 03 04 05

normal random variables

X is a normal (aka Gaussian) random variable X ~ N(, 0?)

1 2/, 2
_ (x—p)</20
f(x) = \/76

EX|=p  VarlX] = o’
The Standard Normal Density Function

u=_0

1
W




changing U, O

density at U is = .399/0

23



normal random variables

X is a normal random variable X ~ N(M,0?)

Y=aX+h
E[Y] = E[aX+b] =ap +b
Var[Y] = Var[aX+b] = a202/  ELIVarl ] as expected;
B - norma It)’ IS the surprise

Y ~ N(ap + b, a%0?)

Important special case: Z = (X-Y)/0 ~ N(O,1)| r@ = j_e—u—mz/zaz

Z ~ N(0O,lI) “standard (or unit) normal”
Use ®(z) to denote CDEF i.e.
2
— < — < 1 — X /2
O(z)=Pr(Z<z)=["__ =€ dx
no closed form ®



Table of the Standard Normal Cumulative Distribution Function (I)(Z)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.0 0.5000 ) 0.5040 0.5080 | 0.5120 0.5160 | 0.5199 0.5239 | 0.5279 0.5319
0.1 0.530 0.5438  0.5478 | 0.5517 0.5557 | 0.5596  0.5436 | 0.5675 0.5714
0.2 0.5793 0.5832  0.5871 | 0.5910 0.5948 | 0.5987 0.6(026 | 0.6064  0.6103

0.6179\ 0.6217  0.6255 | 0.6293  0.6331 X 0.6443  0.6480
0.4 . B-G55 6628 6664——0-6700 0.6808  0.6844

; 0.6915 | 0.6950 0.6985 | 0.7019 0.7054 0. nN7187  (0.7190
0.6 0.7257 | 0.7291 0.7324 | 0.7357  0.7389 | 0.7422 0.745z (I)( 46) 0.7517
0.7 0.7580 | 0.7611 0.7642 | 0.7673  0.7704 | 0.7734  0.776.__ " "~/ 0.7823
0.8 0.7881 0.7910 0.7939 | 0.7967 0.7995 | 0.8023  0.8051 | 0.8078  0.8106
0.9 0.8159 \0.8186  0.8212 | 0.8238 0.8264 | 0.8289  0.8315 | 0.8340  0.8365

Ll.O 0-8413) 0.8438 0.846 The Standard Normal Density Function ' 0.8599
.1 0.864 8665  0.868| ) 0.8810
1.2 0.884 .8869  0.888] . uzd ) 0.8997
1.3 0.9032 0.906| .. T 0.9162
1.4 0.9192 0.922| € _ | g=1 0.9306
1.5 0.9332 0.935] _ | L 0.9429
1.6 0.9452 N 0.9535
1.7 0.9554 © 0. ? 1 159% L) 0.9625
1.8 0.9641 0.9664 0.967% ‘m e SRR 0. A9 0.9699
1.9 0.9713 : 0.9732  0.9738 | 9744/ 0. 97576 0/5756 0.9761

e.o 0.9772 %W?, MB /.9808 0.9812
o= ¥ 30 | 0.9834  (0.9838— 842  0,9846 |/0.9850  0.9854
2.2 0.9861 . 0.9871 0.9875 0.9881 4 0.9884  0.9887
2.3 0.9893  0.9896  0.9898 09901 0.990W99/ 0.9911 0.9913

(3.0 0.9987 J—0.9987  0.9987 | 0.9988 0.9988 [ 0.9989  0.9989 | 0.9989  0.9990
3T 0.9990  0.9991 0.9991 | 0.9991 0.9992 | 0.9992 .9993
3.2 || 0.9993  0.9993 0.9994 | 0.9994 0.9994 | 0.9994|E.g.,see B&T pl155,p531| 9995
3.3 0.9995  0.9995  0.9995 | 0.9996  0.9996 | 0.9996 —0.9996 | 0.9996  0.9996
3.4 0.9997  0.9997  0.9997 | 0.9997  0.9997 | 0.9997  0.9997 | 0.9997  0.9997




f(x)
00 01 02 03 04 05

The Standard Normal Density Function

u=_0

I
-2

]
w

If Z ~N(M,02) what is P(P-0<Z < y+o )?

P(p- 0<<ZL<
P(H-20< ZL<
P(H-30<Z<

Why? N(u.0?

U+ 0)=D(1)- P(-1) ~ 68%
J+20) = ®(2) - D(-2) =~ 95% —!

1 +30) = ®3) - D(-3) = 99%

N

U-kO<|Z<K P+ ko & -k<|(Z-p/o|<+k




normal approximation to binomial
X ~ Bin(n,p) E[X] =np Var[X] = np(l-p)
Poisson approx: good for n large, p small (np constant)
Normal approx: For large n, (p stays fixed):
X =Y ~ N(E[X],Var[X]) = N(np,np(1-p))
Normal approximation good when np(l-p) = 10

DeMoivre-Laplace Theorem:
Let S, = number of successes in n trials (with prob. p).

Then,as n— o0;

Sn_np _
Pr (a < TmstioD) < b) — ®(b) — P(a)

Equivalently:

Pr(a<S, <b 0 b—np _ P a—np
rlasSn<b) — <\/np(1—p)> <\/np(1—p))




P(X=k)

normal approximation to binomial

0.02 0.04 0.06 0.08

0.00

B N I(np, np(1- =

R iy

E Poisson(np) P="5

| | | ! |
30 40 50 60 70
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DeMoivre-Laplace and the “continuity correction”

Potential pitfalls: Let S = # heads in100 flips of a fair coin
Pr(a<S<b) — o (b_%) — @ (“_550)
i) Pr(50 <S < 50) =.08, but ®(0) - ®(0) =0
ii) Pr(50.01 <S < 50.99) =0, but ®(.99/5) - ®(.01/5)~=.08

The “continuity correction’:

Imagine discretizing the normal density by shifting probability
mass at non-integer x to the nearest integer (i.e.,“rounding” x).

Then the probability of S falling in the (integer) interval
[a, ..., b], inclusive, is = the probability of a normal r.v. with the

same W,0? falling in the (real) interval [a-'2 , b+4].

E.g.i) Pr(50 < S < 50) =Pr(49.5 < S < 50.5) = &(-0.1) - &(0.1) =.08
i) Pr(50.01 < S < 50.99) = Pr(the empty set of integers) = 0

More: Feller, 1945 http://www.jstor.org/stable/10.2307/2236142 29




normal approximation to binomial

Ex: Fair coin flipped 40 times. Probability of 20 or 2| heads?

Exact answer:

P(X =20V X =21) = [(gg) + (;Hl))] (%)40 ~[0.2448

Normal approximation:

P(20<X<22 = P(19.5 < X <21.5)
/(195—20 X—20<21.5—20>
{|95<X<2|5} — —
is the set of reals " 10 10
that round to the — 20
set of integers in ~ P <_O-16 S S 047)
S {205xizz} v 10

~  @(0.47) — ®(—0.16) ~ [ 0.2452

30



more on “continuity correction”

Dialog in class:

Q (Student): “Why add/subtract .5! Why not, say, .25?”

A (Prof Evil):“For integer X, the area under the normal density in the strip
X' is approximately the probability of sampling a normal r.v. that rounds
to X, but the area in the strip Xt'/4 is only about half that.”

Q: “What about doubling that area, would that be better?”

A: “Hmm, | dunno, but
extrapolating, you could
also look at |/€ times the
area in the X+&/2 strip,
which in the limit is the
density at X.”

Graph compares />
version (green) to density
(blue). *%2 is better on
average, but not uniformly
better.

k) minus Normal approx

Binomial P(X

0.00010

-0.00010 0.00000

-0.00020

® Bin(n,p))-Norm(np, np(1-p))
_| ® Bin(n,p))-cont.cor.Norm

n =100
p=0.5
RMS Error: 2.3e-05 vs 1.5e-05

I I I
20 30 40

I
50

k

I I I
60 70 80



the central limit theorem (CLT)

Consider i.i.d. (independent, identically distributed) random
vars X, X,, X, ...

X has g = E[X.] and 02 = Var[X]

Asn — o,

X1+X2_|_+X’n,_nlu \
— . N(0,1)

Restated: As h = o0,

7—1§:X- N
_nizl ! u’n



How tall are you? Why?

Credit: Annie Leibovitz, © 1987 ?

Willie Shoemaker & Wilt Chamberlain
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in the real world...

25

Human height is
approximately normal. m

20
|

15

Frequency
[
[

Why might that be
true! i i

R.A. Fisher (1918) ° - —

T T T I I
noted it would follow 64 66 68 70 72 74 76 78

from CLT if height Male Height in Inches
were the sum of many independent random effects, e.g. many
genetic factors (plus some environmental ones like diet). |.e.,

suggested part of mechanism by looking at shape of the curve.
(WAY before anyone really knew what genes, DNA, etc. were...)
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Meta-analysis of Dense Genecentric Association Studies Reveals Common

194

and Uncommon Variants Associated with Height, Lanktree, et,al.

The American Journal of Human Genetics 88, 6—18, January 7, 2011

Table I.Sixt)'-FOur Loci Showing Significant Evidence for Association with Adult Height, Identified with the Use of the IBC Array
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in the real world...

g

§Couné

8

-2000 -1000 O 1000 2000

distance to TSS
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in the real world...

Frequency

15

10

[ | | |
7000 8000 9000 10000

Accidental Deaths per Month

I
11000
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in the real world...

Histogram of Daily Trading-Related Revenue* — Twelve Months Ended December 31, 2007
60 -

O
o

20 +

10

($25)-$0

§$76-5100
§101-5125

§151-5175 N

($50)-($26)
$176-5200 N
$201-$400 F

($100)-($76) N
$126-$150

Number of Trading Days
w N
' o (&)
($300)-{$151) L
($75)-(851) N
§$1-$25
$26-350 |EEG_—_———
$51-§75 I

($125)-(5101) N

($150)-($126) |1

Revenue (doliars in millions)

“Excludes dady profats and losses in the ABS COO market, including recent subprnime-related losses
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he real world...

mn-t

Histogram of Velocity Dispersions
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continuous t.v.’s: summary

pdf and cdf
f(x) = %( F(x) F(a) = [°_f(x) dx

sums become integrals, e.g.

E[X] = x xp(x) E[X]:/OO v f(z)da

— OO

most familiar properties still hold, e.g.
E[aX+bY+c] = aE[X]+bE[Y]+c
Var[X] = E[X*] - (E[X])

40



continuous t.v.’s: summary

Three important examples

X ~ Uni(a,B) uniform in [,B]

f(z) = {5% r € [a, O] E[X] = (ax+B)/2 # ;
0 otherwise Var[X] = (a-B)2/12 :
X ~ Exp(\) exponential
0 r<0 Var[X| = 55

X ~ N(M, 0?%) normal (aka Gaussian, aka the big Kahuna)

y=1

f@) = e > L

Var| X| =0

41



