
P vs NP	



Is everything easy?  	



    No, some problems (halting, …) are uncomputable	


Is everything computable easy?	



    Sadly, no …    	
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The Clique Problem	



Given: a graph G=(V,E) and an integer k	



Question: is there a subset U of V with���
|U| ≥ k such that every pair of vertices in U is joined by an 
edge.	
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"Problem" – the general case	


Ex: The Clique Problem: Given a graph G and an integer k, 
does G contain a k-clique?	



"Problem Instance" – the specific cases	


Ex: Does                     contain a 4-clique? (no)	


Ex: Does                     contain a 3-clique? (yes)	



Some Convenient Technicalities	
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Three kinds of problem:	


	

Search: Find a k-clique in G          	

(3,              ) →	


	

Decision: Is there a k-clique in G  	

(3,              ) → yes    	


	

Verification: Is this a k-clique in G 	

(3,              ) → no	



Problems as Sets of "Yes" Instances	


Ex: CLIQUE = { (G,k) | G contains a k-clique }	



E.g., (                 , 4) ∉  CLIQUE	


E.g., (                 , 3) ∈  CLIQUE	



But we’ll sometimes be a little sloppy and use CLIQUE 
to mean the associated search problem	



Some Convenient Technicalities	





Difficulty/Utility	



Computational Difficulty: verify ≤ decide ≤ search	



Utility: ditto	



In fact, decision and search are often equally difficult, but 
whether or not that holds for a particular problem, by the 
above, if we could show a lower bound on time for the 
decision problem, that implies a lower bound for the harder, 
more useful search versions as well, and the decision version 
is mathematically simpler, so the theory has emphasized the 
decision forms – another convenient technicality.	
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Satisfiability	



Boolean variables x1, ..., xn	


taking values in {0,1}.  0=false, 1=true	



Literals	


xi or ¬xi for i = 1, ..., n	



Clause	


a logical OR of one or more literals	


e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)	



CNF formula (“conjunctive normal form”)	


a logical AND of a bunch of clauses	
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Satisfiability	



CNF formula example	


(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)	



If there is some assignment of 0’s and 1’s to the 
variables that makes it true then we say the formula 
is satisfiable	



the one above is, the following isn’t	


x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3���

Satisfiability:  Given a CNF formula F, is it satisfiable?	
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Satisfiable?	
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More Problems	



Independent-Set: 	


Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is 
an integer, for which there is  a subset U of V  
with |U| ≥ k such that no two vertices in U are 
joined by an edge.	



Clique: 	


Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is 
an integer k, for which there is a subset U of V 
with |U| ≥ k such that every pair of vertices in U 
is joined by an edge.	
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More Problems	



Euler Tour: 	


Graphs G=(V,E) for which there is a cycle traversing each 
edge once.	



Hamilton Tour: 	


Graphs G=(V,E) for which there is a simple cycle of length 
|V|, i.e., traversing each vertex once.	



TSP: 	


Pairs ⟨G,k⟩, where G=(V,E,w) is a a weighted graph and k is 
an integer, such that there is a Hamilton tour of G with 
total weight ≤ k.	
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3-Coloring: 	


Graphs G=(V,E) for which there is an assignment of at most 
3 colors to the vertices in G such that no two adjacent 
vertices have the same color.	



Example:	





Problems	



Short Path:	


   4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with 
vertices s, t, and an integer k, for which there is a path from 
s to t of length ≤ k	



Long Path:	


   4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with 
vertices s, t, and an integer k, for which there is an acyclic 
path from s to t of length ≥ k	
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Common property of these problems: ���
Discrete Exponential Search���

 Loosely–find a needle in a haystack	



“Answer” to a decision problem is literally just yes/
no, but there’s always a somewhat more elaborate 
“solution” (aka “hint” or “certificate”; what the 
search version would report) that transparently‡ 
justifies each “yes” instance (and only those) – but 
it’s buried in an exponentially large search space of 
potential solutions. 	



‡Transparently = verifiable in polynomial time	
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Defining NP	



A decision problem L is in NP iff there is a polynomial time 
procedure v(-,-), (the “verifier”) and an integer k such that 	



for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES ���
and	


for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES	



(“Hints,” sometimes called “certificates,” or “witnesses”, are just strings. 
Think of them as exactly what the output of the search version would 
be.)	





Example: Clique	



“Is there a k-clique in this graph?”	


any subset of k vertices might be a clique	


there are many such subsets, but I only need to find one	



if I knew where it was, I could describe it succinctly, e.g. 
"look at vertices 2,3,17,42,...", 	



I'd know one if I saw one: "yes, there are edges between ���
2 & 3, 2 & 17,... so it's a k-clique”	



this can be quickly checked	


And if there is not a k-clique, I wouldn’t be fooled by a 
statement like “look at vertices 2,3,17,42,...”  	
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More Formally: CLIQUE is in NP	



procedure v(x,h)	


if 	


    x is a well-formed representation of  a graph ���
    G = (V, E) and an integer k, 	


and 	


    h is a well-formed representation of a k-vertex ���
    subset U of V, 	


and 	


	

U is a clique in G, 	



then output "YES"	


else output "I'm unconvinced" 	



Important note: this answer does 
NOT mean x ∉ CLIQUE; just 
means this h isn’t a k-clique (but 
some other might be). 	
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Is it correct?	



For every x = (G,k) such that G contains a k-clique, 
there is a hint h that will cause v(x,h) to say YES, 
namely h = a list of the vertices in such a k-clique	



and	


No hint can fool v into saying yes if either x isn't 
well-formed (the uninteresting case) or if x = (G,k) 
but G does not have any cliques of size k (the 
interesting case)	





Example: SAT	



“Is there a satisfying assignment for this Boolean 
formula?”	



any assignment might work      	



there are lots of them     	



I only need one     	



if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T"      	


I'd know one if I saw one: "yes, plugging that in, I see formula = T...” 
this can be quickly checked	



And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T, 
x2=F, ..., xn=F"      	
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More Formally: SAT ∈ NP	



Hint: the satisfying assignment A	



Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)	


Syntax: True iff  F is a well-formed formula & A is a truth-
assignment to its variables	



Satisfies: plug A into F and evaluate	



Correctness:	


If F is satisfiable, it has some satisfying assignment A, and 
we’ll recognize it	



If F is unsatisfiable, it doesn’t, and we won’t be fooled	
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Keys to showing  that ���
a problem is in NP	



What's the output?  (must be YES/NO)	



What's the input?  Which are YES?	


For every given YES input, is there a hint that would help?  Is 
it polynomial length?	



OK if some inputs need no hint	



For any given NO input, is there a hint that would trick you?	
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The most obvious algorithm for most of these 
problems is brute force:	



try all possible hints; check each one to see if it works.	


Exponential time:	



2n truth assignments for n variables	



n! possible TSP tours of n vertices	



     possible k element subsets of n vertices	



etc.	



…and to date, every alg, even much less-obvious 
ones, are slow, too 	



⎟
⎠

⎞
⎜
⎝

⎛
k
n

Solving NP problems without hints	
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nk!

2nk!

accept 

Needle  
in the  

haystack 

P vs NP vs Exponential Time	



Theorem: Every problem in 
NP can be solved 
deterministically in 
exponential time	



Proof: “hints” are only nk 
long; try all 2nk possibilities, 
say by backtracking.  If any 
succeed, say YES; if ���
all fail, say NO.	
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NP!

P!

Exp!
And  
   worse! 

P and NP	



Every problem in P is in NP	


one doesn’t even need a hint for 
problems in P so just ignore any 
hint you are given	



Every problem in NP is in 
exponential time	



I.e., P ⊆ NP ⊆ Exp	


We know P ≠ Exp, so either 
P ≠NP, or NP ≠ Exp (most 
likely both)	





Review from previous lecture	



Examples in NP:	



	

SAT, short/long paths, Euler/Ham tours, clique, indp set…	


Common feature/definition:	



	

“… there is an X with property Y …” where the property 
is easy (P-time) to verify,  given X, but there are 
exponentially many potential X’s to search among. 	



P  ⊆ NP ⊆ Exp (at least 1 containment is proper; likely both)	
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Euler Tour	


2-SAT	



2-Coloring	


Min Cut	



Shortest Path	
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Hamilton Tour	


3-SAT	



3-Coloring	


Max Cut	



Longest Path	



Similar pairs; seemingly 
different computationally!

Superficially different; 
sim

ilar com
putationally!

Some Problem Pairs	
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P vs NP	



Theory	


P = NP ?	



Open Problem!	


I bet against it	



Practice	


Many interesting, useful, 
natural, well-studied 
problems known to be 
NP-complete	


With rare exceptions, no 
one routinely succeeds in 
finding exact solutions to 
large, arbitrary instances	
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Another NP problem: ���
Vertex Cover	



Input: Undirected graph G = (V, E), integer k.	


Output: True iff there is a subset C of V of ���
size ≤ k such that every edge in E is incident to at 
least one vertex in C.	



Example: Vertex cover of size ≤ 2.	



In NP?  Exercise	
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3SAT ≤p VertexCover 	
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3SAT ≤p VertexCover 	
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3SAT ≤p VertexCover 	
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k=6 

3SAT ≤p VertexCover 	
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k=6 

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p VertexCover 	



(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1  ∨ x3)	
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f                                                                           =	



3-SAT Instance:!
– Variables: x1, x2, …     !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

VertexCover Instance:!
–  k = 2q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ( [i,j], [k,l] ) | i = k or yij = ¬ykl }!

3SAT ≤p VertexCover 	
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k=6 

3SAT ≤p VertexCover 	
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Correctness of “3SAT ≤p VertexCover”	



Summary of reduction function f:  Given formula, make graph G with one group 
per clause, one node per literal.  Connect each to all nodes in same group, plus 
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of 
clauses.  Note: f does not know whether formula is satisfiable or not; does not know if 
G has k-cover; does not try to find satisfying assignment or cover.	


Correctness:	


 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; mapping basically straightforward.  	


 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause.  Add other 
2 nodes of each triangle to cover.  Show it is a cover: 2 per triangle cover triangle 
edges; only true literals (but perhaps not all true literals) uncovered, so at least 
one end of every (x, ¬x) edge is covered. ���
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) 
truth assignment since no (x, ¬x) pair uncovered.  It satisfies c since there is one 
uncovered node in each clause triangle (else some other clause triangle has > 1 
uncovered node, hence an uncovered edge.)	
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(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p VertexCover”	



Suppose we had a fast algorithm ���
for VertexCover, then we could ���
get a fast algorithm for 3SAT:	



Given 3-CNF formula w, build Vertex���
Cover instance y = f(w) as above, run the fast ���
VC alg on y; say “YES, w is satisfiable” iff VC alg says “YES, 
y has a vertex cover of the given size”	



On the other hand, suppose no fast alg is possible 
for 3SAT, then we know none is possible for 
VertexCover either.	





Subset-Sum, AKA Knapsack	



KNAP= { (w1, w2, …, wn, C) | a subset of the wi sums to C }	



wi’s and C encoded in radix r ≥ 2.  (Decimal used in 
following example.)	



Theorem:  3-SAT  ≤p  KNAP	


Pf: given formula with p variables & q clauses, build KNAP instance with ���

2(p+q) wi’s, each with (p+q) decimal digits. For the 2p “literal” 
weights, H.O. p digits mark which variable; L.O. q digits show which 
clauses contain it. Two “slack” weights per clause mark that clause. ���
See example below.	
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3-SAT  ≤p  KNAP	



Variables	

 Clauses	


x	

 y	

 (x ∨ y) 	

 (¬x ∨ y) 	

 (¬x ∨ ¬y) 	



Li
te

ra
ls
	

 w1  (  x)	

 1	

 0	

 1	

 0	

 0	



w2  (¬x) 	

 1	

 0	

 0	

 1	

 1	


w3  (  y)	

 1	

 1	

 1	

 0	


w4  (¬y)	

 1	

 0	

 0	

 1	



Sl
ac

k	



w5  (s11)	

 1	

 0	

 0	


w6  (s12)	

 1	

 0	

 0	


w7  (s21)	

 1	

 0	


w8  (s22)	

 1	

 0	


w9  (s31)	

 1	


w10 (s32)	

 1	


C	

 1	

 1	

 3	

 3	

 3	
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Formula: (x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)   



Correctness	



Poly time for reduction is routine; details omitted.  Again note that it 
does not look at satisfying assignment(s), if any, nor at subset sums, 
but the problem instance it builds captures one via the other... 	



If formula is satisfiable, select the literal weights corresponding to the 
true literals in a satisfying assignment. If that assignment satisfies k 
literals in a clause, also select (3 – k) of the “slack” weights for that 
clause.  Total will equal C.	



Conversely, suppose KNAP instance has a solution.  Note ≤ 5 one’s per 
column, so no “carries” in sum (recall – weights are decimal); i.e., 
columns are decoupled.  Since H.O. p digits of C are 1, exactly one of 
each pair of literal weights included in the subset, so it defines a valid 
assignment. Since L.O. q digits of C are 3, but at most 2 “slack” 
weights contribute to it, at least one of the selected literal weights 
must be 1 in that clause, hence the assignment satisfies the formula.	
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Notes on final	



Coverage: comprehensive, perhaps slight emphasis post-
midterm	



Format: similar to midterm: 	


T/F, multiple choice, problem-solving, explain, …	



Closed book, but 1 page of notes	



Review in sections tomorrow and class Friday – bring 
questions!	
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NP	


Examples:	



VC: given a set if vertices, is size ≤ k & all edges covered?	



KNAP: given subset of weights, does sum = C?	



Graph 3-Coloring: given a coloring, are all nodes different 
from their neighbors in color?	



SAT: given an assignment, does it satisfy the formula?	



Definition:	



A problem L is in NP iff there is a poly time procedure v(-,-), 
(the “verifier”) and an integer k such that for every x ∈ L 
(but no x ∉ L ) ∃ h, |h| ≤ |x|k such that v(x,h) = YES	





SAT has a (superficially) special role	



Cook’s Theorem: Every  problem in NP can be reduced to 
SAT	



Why? 	



Intuitively, “solutions” are just bit strings, 	


“There exists a solution” → “there exists an assignment”	



Computers are just big, dumb piles of Boolean logic, so “the 
verifier says YES” → “That assignment satisfies this 
formula.	



I won’t prove Cook’s theorem, but will give a few examples.	
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NP-complete problem: 3-Coloring	



Input: An undirected graph G=(V,E).	


Output: True iff there is an assignment of at most 3 
colors to the vertices in G such that no two 
adjacent vertices have the same color.	



Example:	



In NP?  Exercise	





3-Coloring ≤p SAT	



Given G = (V, E)	



variables ri, gi, bi for each i in V encode color	



∧i ∈ V [(ri ∨ gi ∨ bi) ∧ 	



	

(¬ri ∨ ¬gi) ∧ (¬gi ∨ ¬bi) ∧ (¬bi ∨ ¬ri)] ∧	


∧(i,j) ∈ E [(¬ri ∨ ¬rj) ∧ (¬gi ∨ ¬gj) ∧ (¬bi ∨ ¬bj)]	
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adj nodes ⇔ diff colors	


no node gets 2 	


every node gets a color	





Vertex cover ≤p SAT	



Given G = (V, E) and k	



variables xi, for each i in V encode inclusion of i in 
cover	



∧(i,j) ∈ E (xi ∨ xj) ∧ “number of True xi is ≤ k” 	
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every edge covered 
by one end or other	



possible in 3 CNF, but 
technically messy; 

basically a “counter”, 
counting 1’s	





Hamilton Circuit ≤p SAT	



Given G = (V, E) [encode, e.g.: eij =1 ⇔ edge (i,j)]	



variables xij, for each i,j in V encode “j follows i in the 
tour”	



∧(i,j) (xij ⇒ eij) ∧ “it’s a permutation” ∧ “cycle length = n”	
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the path follows 
actual edges	



every row/column has 
exacty 1 one bit	



Xn = I, no smaller 
power k has Xkii=1	





Cook’s Theorem	



Every problem in NP is reducible to SAT	



Idea of proof is extension of above examples, but done in a 
general way, based on the definition of NP – show how 
the SAT formula can simulate whatever (polynomial time) 
computation the verifier does.	
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Why is SAT NP-complete?	



Cook’s proof is somewhat involved; I won’t show it.  
But its essence is not so hard to grasp:	
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Encode “solution” using Boolean variables.  SAT mimics “is there a solution” 
via “is there an assignment”.  Digital computers just do Boolean logic, and 
“SAT” can mimic that, too, hence can verify that the assignment actually 
encodes a solution.	



Generic “NP” problems: expo. search–	


is there a poly size “solution,” verifiable 
by computer in poly time	



“SAT”:	


is there a (poly size) assignment 
satisfying the formula



Reductions	
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(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p VertexCover”	



Suppose we had a fast algorithm ���
for VertexCover, then we could ���
get a fast algorithm for 3SAT:	



Given 3-CNF formula w, build Vertex���
Cover instance y = f(w) as above, run the fast ���
VC alg on y; say “YES, w is satisfiable” iff VC alg says “YES, 
y has a vertex cover of the given size”	



On the other hand, suppose no fast alg is possible 
for 3SAT, then we know none is possible for 
VertexCover either.	
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Utility of “3SAT ≤p KNAP”	



Suppose we had a fast algorithm ���
for Knapsack, then we could ���
get a fast algorithm for 3SAT:	



Given 3-CNF formula w, build Knap���
instance y = f(w) as above, run the fast ���
Knap alg on y; say “YES, w is satisfiable” ���
iff Knap alg says “YES, a subset sums to C”	



If, on the other hand, no fast alg is possible for 
3SAT, then we know none is possible for KNAP 
either.	



Variables	

 Clauses	


x	

 y	

 (x ∨ y) 	

 (¬x ∨ 

y) 	


(¬x ∨ 
¬y) 	



Li
te

ra
ls
	

 w1  (  x)	

 1	

 0	

 1	

 0	

 0	



w2  (¬x) 	

 1	

 0	

 0	

 1	

 1	


w3  (  y)	

 1	

 1	

 1	

 0	


w4  (¬y)	

 1	

 0	

 0	

 1	



Sl
ac

k	



w5  (s11)	

 1	

 0	

 0	


w6  (s12)	

 1	

 0	

 0	


w7  (s21)	

 1	

 0	


w8  (s22)	

 1	

 0	


w9  (s31)	

 1	


w10 (s32)	

 1	


C	

 1	

 1	

 3	

 3	

 3	
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“3SAT ≤p VC/KNAP” Retrospective	



Previous slides: two suppositions	



Somewhat clumsy to have to state things that way.	


Alternative: abstract out the key elements, give it a name 
(“polynomial time reduction”), then properties like the 
above always hold. 	
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Polynomial-Time Reductions	



Definition: Let A and B be two problems.	


We say that A is polynomially reducible to B (A  ≤p B) 
if there exists a polynomial-time algorithm f that 
converts each instance x of problem A to an 
instance f(x) of B such that: ���

x is a YES instance of A  iff  f(x) is a YES instance of B	



x ∈ A   ⇔   f(x) ∈ B 	
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polynomial 

W
hy

 th
e 

no
ta

tio
n?

 

Polynomial-Time Reductions (cont.)	



Define: A ≤p B  “A is polynomial-time reducible to 
B”, iff there is a polynomial-time computable 
function f such that:   x ∈ A   ⇔   f(x) ∈ B 	



“complexity of A” ≤ “complexity of B” + “complexity of f”	



(1)  A ≤p B  and  B ∈ P   ⇒   A ∈ P 	


(2)  A ≤p B  and  A ∉ P   ⇒   B ∉ P  	


(3)  A ≤p B  and  B ≤p C   ⇒   A ≤p C  (transitivity)	
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NP-Completeness	



Definition: Problem B is NP-hard if 
every problem in NP is polynomially 
reducible to B.	



Definition: Problem B is NP-complete 
if:	



(1) B belongs to NP, and 	



(2) B is NP-hard.	



NP!

P!

Exp!

NP-Hard	



NP-Complete	
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Alt way to prove NP-completeness	



Lemma: Problem B is NP-complete if:	


(1)  B belongs to NP, and 	


(2’) A is polynomial-time reducible to B, for some problem 
A that is NP-complete.	



That is, to show (2’) given a new problem B, it is 
sufficient to show that SAT or any other NP-
complete problem is polynomial-time reducible to 
B.	
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Ex: VertexCover is NP-complete	



3-SAT is NP-complete (shown by S. Cook)	



3-SAT ≤p VertexCover	


VertexCover is in NP (we showed this earlier)	


Therefore VertexCover is also NP-complete	



So, poly-time algorithm for VertexCover would give 
poly-time algs for everything in NP	





Example:	



3-SAT ≤p UndirectedHamPath	



(Note: this is not 
the same as the 
reduction given in 
the book.)	



(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)   

x ∨ y	



¬x ∨ y	

 ¬x ∨ ¬y	



s	

 t	


¬x  ¬y 

x  y 



Ham Path Gadget	


X	



Many copies of this 12-node gadget, each with one or more edges 
connecting each of the 4 corners to other nodes or gadgets (but no 
other edges to the 8 “internal” nodes).	



Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as 
shown); the other (by symmetry) 0→0’	



Pf: Note *: at 1st visit to any column, must next go to middle node in column, else 
it will subsequently become an untraversable “dead end.”  ���
WLOG, suppose enter at 1.  By *, must then go down to 0.  2 cases:	



Case a: (top left) If next move is to right, then * forces path up, left is blocked, so 
right again, * forces down, etc; out at 1’.	



Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’.  * forces 
next move to be up/down to the other of 0’/1’.  Must then go left to reach the 
2 middle columns,  but there’s no exit from them.  So case b is impossible.	
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1	



0	



1’	



0’	

0’	



1	



0	



1’	





3-SAT ≤p UndirectedHamPath	



Time for the reduction: to be computable in poly time it is necessary (but 
not sufficient) that G’s size is polynomial in n, the length of the formula. 
Easy to see this is true, since G has q + 12 (p + m) + 1 = O(n) vertices, 
where q is the number of clauses, p is the number of instances of literals, 
and m is the number of variables.  Furthermore, the structure is simple 
and regular, given the formula, so easily / quickly computable, but details 
are omitted. (More detail expected in your homeworks, e.g.)  Again, 
reduction builds G, doesn’t solve it.	
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x ∨ y	



¬x ∨ y	

 ¬x ∨ ¬y	



s	

 t	


¬x  ¬y 

y x  



Correctness, I	



Ignoring the clause nodes, there are 2m s-t paths along the 
“main chain,” one for each of 2m assignments to m variables.	



If f is satisfiable, pick a satisfying assignment, and pick a true 
literal in each clause.  Take the corresponding “main chain” 
path; add a detour to/from ci for the true literal chosen from 
clause i.  Result is a Hamilton path.	
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…∨  xk  ∨…	



xk=T	



xk chosen in clause ci 	



x ∨ y	



¬x ∨ y	

 ¬x ∨ ¬y	



s	

 t	


¬x  ¬y 

y x  



Correctness, II	



Conversely, suppose G has a Ham path.  Obviously, the path must 
detour from the main chain to each clause node ci.  If it does not return 
immediately to the next gadget on main chain, then (by gadget properties 
on earlier slide), that gadget cannot be traversed.  Thus, the Ham path 
must consistently use “top chain” or consistently “bottom chain” exits to 
clause nodes from each variable gadget.  If top chain, set that variable 
True; else set it False.  Result is a satisfying assignment, since each clause 
is visited from a “true” literal.	
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Detour only possible 
on an xk=T subpath	



X	



xk=T	

 And must immediately return	



x ∨ y	



¬x ∨ y	

 ¬x ∨ ¬y	



s	

 t	


¬x  ¬y 

y x  

…∨  xk  ∨…	
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“I can’t find an efficient algorithm, but neither can all these 
famous people.”                 [Garey & Johnson, 1979] 
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Coping with NP-Completeness	



Is your real problem a special subcase?	


E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto  3- vs 2-
coloring	


E.g. you only need planar graphs, or degree 3 graphs, …?	



Guaranteed approximation good enough?	


E.g. Euclidean TSP within 2 * Opt in poly time	



Fast enough in practice (esp. if n is small), 	


E.g. clever exhaustive search like backtrack, branch & 
bound, pruning	



Heuristics – usually a good approximation and/or 
usually fast	
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NP!

P!

Exp!
Worse… 

NP-C Summary	



Big-O    	

–  good	


P          	

–  good	


Exp       	

–  bad	


Exp, but hints help?  NP	


NP-hard, NP-complete – bad (I bet)	


To show NP-complete – reductions	


NP-complete = hopeless? – no, but you ���
  need to lower your expectations: ���
  heuristics & approximations.	





P	



Many important problems are in P: solvable in deterministic 
polynomial time	



	

Details are more the fodder of algorithms courses, but we’ve seen a 
few examples here, plus many other examples in other courses	



Few problems not in P are routinely solved; 	



	

For those that are, practice is usually restricted to small instances, or 
we’re forced to settle for approximate, suboptimal, or heuristic 
“solutions”	



A major goal of complexity theory is to delineate the 
boundaries of what we can feasibly solve	
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NP	



The tip-of-the-iceberg in terms of problems conjectured not 
to be in P, but a very important tip, because	



	

a) they’re very commonly encountered, probably because	


	

b) they arise naturally from basic “search” and 
“optimization” questions.	



Definition: poly time verifiable, “guess and check”, “is there 
a…” – all useful	



82	





NP-completeness	



Defn & Properties of ≤p	



A is NP-hard: everything in NP reducible to A	



A is NP-complete: NP-hard and in NP	


	

“the hardest problems in NP”	



	

“All alike under the skin”	



Most known natural problems in NP are complete	


	

#1: 3CNF-SAT	



	

Many others: Clique, VertexCover, HamPath, Circuit-SAT,…	
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