
P vs NP	

Is everything easy? 	

 No, some problems (halting, …) are uncomputable	

Is everything computable easy?	

 Sadly, no … 	

1	

2	

The Clique Problem	

Given: a graph G=(V,E) and an integer k	

Question: is there a subset U of V with���
|U| ≥ k such that every pair of vertices in U is joined by an
edge.	

3	

"Problem" – the general case	

Ex: The Clique Problem: Given a graph G and an integer k,
does G contain a k-clique?	

"Problem Instance" – the specific cases	

Ex: Does contain a 4-clique? (no)	

Ex: Does contain a 3-clique? (yes)	

Some Convenient Technicalities	

4	

Three kinds of problem:	

	
Search: Find a k-clique in G 	
(3,) →	

	
Decision: Is there a k-clique in G 	
(3,) → yes 	

	
Verification: Is this a k-clique in G 	
(3,) → no	

Problems as Sets of "Yes" Instances	

Ex: CLIQUE = { (G,k) | G contains a k-clique }	

E.g., (, 4) ∉ CLIQUE	

E.g., (, 3) ∈ CLIQUE	

But we’ll sometimes be a little sloppy and use CLIQUE
to mean the associated search problem	

Some Convenient Technicalities	

Difficulty/Utility	

Computational Difficulty: verify ≤ decide ≤ search	

Utility: ditto	

In fact, decision and search are often equally difficult, but
whether or not that holds for a particular problem, by the
above, if we could show a lower bound on time for the
decision problem, that implies a lower bound for the harder,
more useful search versions as well, and the decision version
is mathematically simpler, so the theory has emphasized the
decision forms – another convenient technicality.	

5	

7	

Satisfiability	

Boolean variables x1, ..., xn	

taking values in {0,1}. 0=false, 1=true	

Literals	

xi or ¬xi for i = 1, ..., n	

Clause	

a logical OR of one or more literals	

e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)	

CNF formula (“conjunctive normal form”)	

a logical AND of a bunch of clauses	

8	

Satisfiability	

CNF formula example	

(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)	

If there is some assignment of 0’s and 1’s to the
variables that makes it true then we say the formula
is satisfiable	

the one above is, the following isn’t	

x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3���

Satisfiability: Given a CNF formula F, is it satisfiable?	

9	

Satisfiable?	

(
 x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	
 (
 ¬x	
 ∨	
 y	
 ∨	
 ¬z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	
 (
 ¬x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	

(
 ¬x	
 ∨	
 ¬y	
 ∨	
 ¬z	
)	
 ∧	
 (
 x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	
 (
 x	
 ∨	
 y	
 ∨	
 ¬z	
)	

(
 x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	
 (
 ¬x	
 ∨	
 y	
 ∨	
 ¬z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 ¬z	
)	
 ∧	
 (
 ¬x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	

(
 ¬x	
 ∨	
 ¬y	
 ∨	
 ¬z	
)	
 ∧	
 (
 ¬x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	
 (
 x	
 ∨	
 y	
 ∨	
 ¬z	
)	

10	

More Problems	

Independent-Set: 	

Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is
an integer, for which there is a subset U of V
with |U| ≥ k such that no two vertices in U are
joined by an edge.	

Clique: 	

Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is
an integer k, for which there is a subset U of V
with |U| ≥ k such that every pair of vertices in U
is joined by an edge.	

11	

More Problems	

Euler Tour: 	

Graphs G=(V,E) for which there is a cycle traversing each
edge once.	

Hamilton Tour: 	

Graphs G=(V,E) for which there is a simple cycle of length
|V|, i.e., traversing each vertex once.	

TSP: 	

Pairs ⟨G,k⟩, where G=(V,E,w) is a a weighted graph and k is
an integer, such that there is a Hamilton tour of G with
total weight ≤ k.	

12	

3-Coloring: 	

Graphs G=(V,E) for which there is an assignment of at most
3 colors to the vertices in G such that no two adjacent
vertices have the same color.	

Example:	

Problems	

Short Path:	

 4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with
vertices s, t, and an integer k, for which there is a path from
s to t of length ≤ k	

Long Path:	

 4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with
vertices s, t, and an integer k, for which there is an acyclic
path from s to t of length ≥ k	

13	

14	

Common property of these problems: ���
Discrete Exponential Search���

 Loosely–find a needle in a haystack	

“Answer” to a decision problem is literally just yes/
no, but there’s always a somewhat more elaborate
“solution” (aka “hint” or “certificate”; what the
search version would report) that transparently‡
justifies each “yes” instance (and only those) – but
it’s buried in an exponentially large search space of
potential solutions. 	

‡Transparently = verifiable in polynomial time	

15	

Defining NP	

A decision problem L is in NP iff there is a polynomial time
procedure v(-,-), (the “verifier”) and an integer k such that 	

for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES ���
and	

for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES	

(“Hints,” sometimes called “certificates,” or “witnesses”, are just strings.
Think of them as exactly what the output of the search version would
be.)	

Example: Clique	

“Is there a k-clique in this graph?”	

any subset of k vertices might be a clique	

there are many such subsets, but I only need to find one	

if I knew where it was, I could describe it succinctly, e.g.
"look at vertices 2,3,17,42,...", 	

I'd know one if I saw one: "yes, there are edges between ���
2 & 3, 2 & 17,... so it's a k-clique”	

this can be quickly checked	

And if there is not a k-clique, I wouldn’t be fooled by a
statement like “look at vertices 2,3,17,42,...” 	

16	

17	

More Formally: CLIQUE is in NP	

procedure v(x,h)	

if 	

 x is a well-formed representation of a graph ���
 G = (V, E) and an integer k, 	

and 	

 h is a well-formed representation of a k-vertex ���
 subset U of V, 	

and 	

	
U is a clique in G, 	

then output "YES"	

else output "I'm unconvinced" 	

Important note: this answer does
NOT mean x ∉ CLIQUE; just
means this h isn’t a k-clique (but
some other might be). 	

18	

Is it correct?	

For every x = (G,k) such that G contains a k-clique,
there is a hint h that will cause v(x,h) to say YES,
namely h = a list of the vertices in such a k-clique	

and	

No hint can fool v into saying yes if either x isn't
well-formed (the uninteresting case) or if x = (G,k)
but G does not have any cliques of size k (the
interesting case)	

Example: SAT	

“Is there a satisfying assignment for this Boolean
formula?”	

any assignment might work 	

there are lots of them 	

I only need one 	

if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T" 	

I'd know one if I saw one: "yes, plugging that in, I see formula = T...”
this can be quickly checked	

And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T,
x2=F, ..., xn=F" 	

19	

20	

More Formally: SAT ∈ NP	

Hint: the satisfying assignment A	

Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)	

Syntax: True iff F is a well-formed formula & A is a truth-
assignment to its variables	

Satisfies: plug A into F and evaluate	

Correctness:	

If F is satisfiable, it has some satisfying assignment A, and
we’ll recognize it	

If F is unsatisfiable, it doesn’t, and we won’t be fooled	

21	

Keys to showing that ���
a problem is in NP	

What's the output? (must be YES/NO)	

What's the input? Which are YES?	

For every given YES input, is there a hint that would help? Is
it polynomial length?	

OK if some inputs need no hint	

For any given NO input, is there a hint that would trick you?	

22	

The most obvious algorithm for most of these
problems is brute force:	

try all possible hints; check each one to see if it works.	

Exponential time:	

2n truth assignments for n variables	

n! possible TSP tours of n vertices	

 possible k element subsets of n vertices	

etc.	

…and to date, every alg, even much less-obvious
ones, are slow, too 	

⎟
⎠

⎞
⎜
⎝

⎛
k
n

Solving NP problems without hints	

23	

nk!

2nk!

accept

Needle
in the

haystack

P vs NP vs Exponential Time	

Theorem: Every problem in
NP can be solved
deterministically in
exponential time	

Proof: “hints” are only nk
long; try all 2nk possibilities,
say by backtracking. If any
succeed, say YES; if ���
all fail, say NO.	

24	

NP!

P!

Exp!
And
 worse!

P and NP	

Every problem in P is in NP	

one doesn’t even need a hint for
problems in P so just ignore any
hint you are given	

Every problem in NP is in
exponential time	

I.e., P ⊆ NP ⊆ Exp	

We know P ≠ Exp, so either
P ≠NP, or NP ≠ Exp (most
likely both)	

Review from previous lecture	

Examples in NP:	

	
SAT, short/long paths, Euler/Ham tours, clique, indp set…	

Common feature/definition:	

	
“… there is an X with property Y …” where the property
is easy (P-time) to verify, given X, but there are
exponentially many potential X’s to search among. 	

P ⊆ NP ⊆ Exp (at least 1 containment is proper; likely both)	

25	

Euler Tour	

2-SAT	

2-Coloring	

Min Cut	

Shortest Path	

26	

Hamilton Tour	

3-SAT	

3-Coloring	

Max Cut	

Longest Path	

Similar pairs; seemingly
different computationally!

Superficially different;
sim

ilar com
putationally!

Some Problem Pairs	

27	

P vs NP	

Theory	

P = NP ?	

Open Problem!	

I bet against it	

Practice	

Many interesting, useful,
natural, well-studied
problems known to be
NP-complete	

With rare exceptions, no
one routinely succeeds in
finding exact solutions to
large, arbitrary instances	

28	

Another NP problem: ���
Vertex Cover	

Input: Undirected graph G = (V, E), integer k.	

Output: True iff there is a subset C of V of ���
size ≤ k such that every edge in E is incident to at
least one vertex in C.	

Example: Vertex cover of size ≤ 2.	

In NP? Exercise	

29	

3SAT ≤p VertexCover 	

30	

3SAT ≤p VertexCover 	

31	

3SAT ≤p VertexCover 	

32	

k=6

3SAT ≤p VertexCover 	

33	

k=6

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p VertexCover 	

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)	

34	

f =	

3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

VertexCover Instance:!
–  k = 2q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ([i,j], [k,l]) | i = k or yij = ¬ykl }!

3SAT ≤p VertexCover 	

35	

k=6

3SAT ≤p VertexCover 	

37	

Correctness of “3SAT ≤p VertexCover”	

Summary of reduction function f: Given formula, make graph G with one group
per clause, one node per literal. Connect each to all nodes in same group, plus
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of
clauses. Note: f does not know whether formula is satisfiable or not; does not know if
G has k-cover; does not try to find satisfying assignment or cover.	

Correctness:	

 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward. 	

 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause. Add other
2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle
edges; only true literals (but perhaps not all true literals) uncovered, so at least
one end of every (x, ¬x) edge is covered. ���
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial)
truth assignment since no (x, ¬x) pair uncovered. It satisfies c since there is one
uncovered node in each clause triangle (else some other clause triangle has > 1
uncovered node, hence an uncovered edge.)	

38	

(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p VertexCover”	

Suppose we had a fast algorithm ���
for VertexCover, then we could ���
get a fast algorithm for 3SAT:	

Given 3-CNF formula w, build Vertex���
Cover instance y = f(w) as above, run the fast ���
VC alg on y; say “YES, w is satisfiable” iff VC alg says “YES,
y has a vertex cover of the given size”	

On the other hand, suppose no fast alg is possible
for 3SAT, then we know none is possible for
VertexCover either.	

Subset-Sum, AKA Knapsack	

KNAP= { (w1, w2, …, wn, C) | a subset of the wi sums to C }	

wi’s and C encoded in radix r ≥ 2. (Decimal used in
following example.)	

Theorem: 3-SAT ≤p KNAP	

Pf: given formula with p variables & q clauses, build KNAP instance with ���

2(p+q) wi’s, each with (p+q) decimal digits. For the 2p “literal”
weights, H.O. p digits mark which variable; L.O. q digits show which
clauses contain it. Two “slack” weights per clause mark that clause. ���
See example below.	

39	

3-SAT ≤p KNAP	

Variables	
 Clauses	

x	
 y	
 (x ∨ y) 	
 (¬x ∨ y) 	
 (¬x ∨ ¬y) 	

Li
te

ra
ls
	
 w1 (x)	
 1	
 0	
 1	
 0	
 0	

w2 (¬x) 	
 1	
 0	
 0	
 1	
 1	

w3 (y)	
 1	
 1	
 1	
 0	

w4 (¬y)	
 1	
 0	
 0	
 1	

Sl
ac

k	

w5 (s11)	
 1	
 0	
 0	

w6 (s12)	
 1	
 0	
 0	

w7 (s21)	
 1	
 0	

w8 (s22)	
 1	
 0	

w9 (s31)	
 1	

w10 (s32)	
 1	

C	
 1	
 1	
 3	
 3	
 3	

40	

Formula: (x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)

Correctness	

Poly time for reduction is routine; details omitted. Again note that it
does not look at satisfying assignment(s), if any, nor at subset sums,
but the problem instance it builds captures one via the other... 	

If formula is satisfiable, select the literal weights corresponding to the
true literals in a satisfying assignment. If that assignment satisfies k
literals in a clause, also select (3 – k) of the “slack” weights for that
clause. Total will equal C.	

Conversely, suppose KNAP instance has a solution. Note ≤ 5 one’s per
column, so no “carries” in sum (recall – weights are decimal); i.e.,
columns are decoupled. Since H.O. p digits of C are 1, exactly one of
each pair of literal weights included in the subset, so it defines a valid
assignment. Since L.O. q digits of C are 3, but at most 2 “slack”
weights contribute to it, at least one of the selected literal weights
must be 1 in that clause, hence the assignment satisfies the formula.	
 41	

Notes on final	

Coverage: comprehensive, perhaps slight emphasis post-
midterm	

Format: similar to midterm: 	

T/F, multiple choice, problem-solving, explain, …	

Closed book, but 1 page of notes	

Review in sections tomorrow and class Friday – bring
questions!	

42	

43	

NP	

Examples:	

VC: given a set if vertices, is size ≤ k & all edges covered?	

KNAP: given subset of weights, does sum = C?	

Graph 3-Coloring: given a coloring, are all nodes different
from their neighbors in color?	

SAT: given an assignment, does it satisfy the formula?	

Definition:	

A problem L is in NP iff there is a poly time procedure v(-,-),
(the “verifier”) and an integer k such that for every x ∈ L
(but no x ∉ L) ∃ h, |h| ≤ |x|k such that v(x,h) = YES	

SAT has a (superficially) special role	

Cook’s Theorem: Every problem in NP can be reduced to
SAT	

Why? 	

Intuitively, “solutions” are just bit strings, 	

“There exists a solution” → “there exists an assignment”	

Computers are just big, dumb piles of Boolean logic, so “the
verifier says YES” → “That assignment satisfies this
formula.	

I won’t prove Cook’s theorem, but will give a few examples.	

44	

45	

NP-complete problem: 3-Coloring	

Input: An undirected graph G=(V,E).	

Output: True iff there is an assignment of at most 3
colors to the vertices in G such that no two
adjacent vertices have the same color.	

Example:	

In NP? Exercise	

3-Coloring ≤p SAT	

Given G = (V, E)	

variables ri, gi, bi for each i in V encode color	

∧i ∈ V [(ri ∨ gi ∨ bi) ∧ 	

	
(¬ri ∨ ¬gi) ∧ (¬gi ∨ ¬bi) ∧ (¬bi ∨ ¬ri)] ∧	

∧(i,j) ∈ E [(¬ri ∨ ¬rj) ∧ (¬gi ∨ ¬gj) ∧ (¬bi ∨ ¬bj)]	

46	

adj nodes ⇔ diff colors	

no node gets 2 	

every node gets a color	

Vertex cover ≤p SAT	

Given G = (V, E) and k	

variables xi, for each i in V encode inclusion of i in
cover	

∧(i,j) ∈ E (xi ∨ xj) ∧ “number of True xi is ≤ k” 	

47	

every edge covered
by one end or other	

possible in 3 CNF, but
technically messy;

basically a “counter”,
counting 1’s	

Hamilton Circuit ≤p SAT	

Given G = (V, E) [encode, e.g.: eij =1 ⇔ edge (i,j)]	

variables xij, for each i,j in V encode “j follows i in the
tour”	

∧(i,j) (xij ⇒ eij) ∧ “it’s a permutation” ∧ “cycle length = n”	

48	

the path follows
actual edges	

every row/column has
exacty 1 one bit	

Xn = I, no smaller
power k has Xkii=1	

Cook’s Theorem	

Every problem in NP is reducible to SAT	

Idea of proof is extension of above examples, but done in a
general way, based on the definition of NP – show how
the SAT formula can simulate whatever (polynomial time)
computation the verifier does.	

49	

Why is SAT NP-complete?	

Cook’s proof is somewhat involved; I won’t show it.
But its essence is not so hard to grasp:	

50	

Encode “solution” using Boolean variables. SAT mimics “is there a solution”
via “is there an assignment”. Digital computers just do Boolean logic, and
“SAT” can mimic that, too, hence can verify that the assignment actually
encodes a solution.	

Generic “NP” problems: expo. search–	

is there a poly size “solution,” verifiable
by computer in poly time	

“SAT”:	

is there a (poly size) assignment
satisfying the formula

Reductions	

51	

52	

(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p VertexCover”	

Suppose we had a fast algorithm ���
for VertexCover, then we could ���
get a fast algorithm for 3SAT:	

Given 3-CNF formula w, build Vertex���
Cover instance y = f(w) as above, run the fast ���
VC alg on y; say “YES, w is satisfiable” iff VC alg says “YES,
y has a vertex cover of the given size”	

On the other hand, suppose no fast alg is possible
for 3SAT, then we know none is possible for
VertexCover either.	

53	

Utility of “3SAT ≤p KNAP”	

Suppose we had a fast algorithm ���
for Knapsack, then we could ���
get a fast algorithm for 3SAT:	

Given 3-CNF formula w, build Knap���
instance y = f(w) as above, run the fast ���
Knap alg on y; say “YES, w is satisfiable” ���
iff Knap alg says “YES, a subset sums to C”	

If, on the other hand, no fast alg is possible for
3SAT, then we know none is possible for KNAP
either.	

Variables	
 Clauses	

x	
 y	
 (x ∨ y) 	
 (¬x ∨

y) 	

(¬x ∨
¬y) 	

Li
te

ra
ls
	
 w1 (x)	
 1	
 0	
 1	
 0	
 0	

w2 (¬x) 	
 1	
 0	
 0	
 1	
 1	

w3 (y)	
 1	
 1	
 1	
 0	

w4 (¬y)	
 1	
 0	
 0	
 1	

Sl
ac

k	

w5 (s11)	
 1	
 0	
 0	

w6 (s12)	
 1	
 0	
 0	

w7 (s21)	
 1	
 0	

w8 (s22)	
 1	
 0	

w9 (s31)	
 1	

w10 (s32)	
 1	

C	
 1	
 1	
 3	
 3	
 3	

54	

“3SAT ≤p VC/KNAP” Retrospective	

Previous slides: two suppositions	

Somewhat clumsy to have to state things that way.	

Alternative: abstract out the key elements, give it a name
(“polynomial time reduction”), then properties like the
above always hold. 	

55	

Polynomial-Time Reductions	

Definition: Let A and B be two problems.	

We say that A is polynomially reducible to B (A ≤p B)
if there exists a polynomial-time algorithm f that
converts each instance x of problem A to an
instance f(x) of B such that: ���

x is a YES instance of A iff f(x) is a YES instance of B	

x ∈ A ⇔ f(x) ∈ B 	

56	

polynomial

W
hy

 th
e

no
ta

tio
n?

Polynomial-Time Reductions (cont.)	

Define: A ≤p B “A is polynomial-time reducible to
B”, iff there is a polynomial-time computable
function f such that: x ∈ A ⇔ f(x) ∈ B 	

“complexity of A” ≤ “complexity of B” + “complexity of f”	

(1) A ≤p B and B ∈ P ⇒ A ∈ P 	

(2) A ≤p B and A ∉ P ⇒ B ∉ P 	

(3) A ≤p B and B ≤p C ⇒ A ≤p C (transitivity)	

57	

NP-Completeness	

Definition: Problem B is NP-hard if
every problem in NP is polynomially
reducible to B.	

Definition: Problem B is NP-complete
if:	

(1) B belongs to NP, and 	

(2) B is NP-hard.	

NP!

P!

Exp!

NP-Hard	

NP-Complete	

60	

Alt way to prove NP-completeness	

Lemma: Problem B is NP-complete if:	

(1) B belongs to NP, and 	

(2’) A is polynomial-time reducible to B, for some problem
A that is NP-complete.	

That is, to show (2’) given a new problem B, it is
sufficient to show that SAT or any other NP-
complete problem is polynomial-time reducible to
B.	

62	

Ex: VertexCover is NP-complete	

3-SAT is NP-complete (shown by S. Cook)	

3-SAT ≤p VertexCover	

VertexCover is in NP (we showed this earlier)	

Therefore VertexCover is also NP-complete	

So, poly-time algorithm for VertexCover would give
poly-time algs for everything in NP	

Example:	

3-SAT ≤p UndirectedHamPath	

(Note: this is not
the same as the
reduction given in
the book.)	

(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)

x ∨ y	

¬x ∨ y	
 ¬x ∨ ¬y	

s	
 t	

¬x ¬y

x y

Ham Path Gadget	

X	

Many copies of this 12-node gadget, each with one or more edges
connecting each of the 4 corners to other nodes or gadgets (but no
other edges to the 8 “internal” nodes).	

Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as
shown); the other (by symmetry) 0→0’	

Pf: Note *: at 1st visit to any column, must next go to middle node in column, else
it will subsequently become an untraversable “dead end.” ���
WLOG, suppose enter at 1. By *, must then go down to 0. 2 cases:	

Case a: (top left) If next move is to right, then * forces path up, left is blocked, so
right again, * forces down, etc; out at 1’.	

Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’. * forces
next move to be up/down to the other of 0’/1’. Must then go left to reach the
2 middle columns, but there’s no exit from them. So case b is impossible.	

64	

1	

0	

1’	

0’	
0’	

1	

0	

1’	

3-SAT ≤p UndirectedHamPath	

Time for the reduction: to be computable in poly time it is necessary (but
not sufficient) that G’s size is polynomial in n, the length of the formula.
Easy to see this is true, since G has q + 12 (p + m) + 1 = O(n) vertices,
where q is the number of clauses, p is the number of instances of literals,
and m is the number of variables. Furthermore, the structure is simple
and regular, given the formula, so easily / quickly computable, but details
are omitted. (More detail expected in your homeworks, e.g.) Again,
reduction builds G, doesn’t solve it.	

65	

x ∨ y	

¬x ∨ y	
 ¬x ∨ ¬y	

s	
 t	

¬x ¬y

y x

Correctness, I	

Ignoring the clause nodes, there are 2m s-t paths along the
“main chain,” one for each of 2m assignments to m variables.	

If f is satisfiable, pick a satisfying assignment, and pick a true
literal in each clause. Take the corresponding “main chain”
path; add a detour to/from ci for the true literal chosen from
clause i. Result is a Hamilton path.	

66	

…∨ xk ∨…	

xk=T	

xk chosen in clause ci 	

x ∨ y	

¬x ∨ y	
 ¬x ∨ ¬y	

s	
 t	

¬x ¬y

y x

Correctness, II	

Conversely, suppose G has a Ham path. Obviously, the path must
detour from the main chain to each clause node ci. If it does not return
immediately to the next gadget on main chain, then (by gadget properties
on earlier slide), that gadget cannot be traversed. Thus, the Ham path
must consistently use “top chain” or consistently “bottom chain” exits to
clause nodes from each variable gadget. If top chain, set that variable
True; else set it False. Result is a satisfying assignment, since each clause
is visited from a “true” literal.	

67	

Detour only possible
on an xk=T subpath	

X	

xk=T	
 And must immediately return	

x ∨ y	

¬x ∨ y	
 ¬x ∨ ¬y	

s	
 t	

¬x ¬y

y x

…∨ xk ∨…	

78	

“I can’t find an efficient algorithm, but neither can all these
famous people.” [Garey & Johnson, 1979]

79	

Coping with NP-Completeness	

Is your real problem a special subcase?	

E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto 3- vs 2-
coloring	

E.g. you only need planar graphs, or degree 3 graphs, …?	

Guaranteed approximation good enough?	

E.g. Euclidean TSP within 2 * Opt in poly time	

Fast enough in practice (esp. if n is small), 	

E.g. clever exhaustive search like backtrack, branch &
bound, pruning	

Heuristics – usually a good approximation and/or
usually fast	

80	

NP!

P!

Exp!
Worse…

NP-C Summary	

Big-O 	
– good	

P 	
– good	

Exp 	
– bad	

Exp, but hints help? NP	

NP-hard, NP-complete – bad (I bet)	

To show NP-complete – reductions	

NP-complete = hopeless? – no, but you ���
 need to lower your expectations: ���
 heuristics & approximations.	

P	

Many important problems are in P: solvable in deterministic
polynomial time	

	
Details are more the fodder of algorithms courses, but we’ve seen a
few examples here, plus many other examples in other courses	

Few problems not in P are routinely solved; 	

	
For those that are, practice is usually restricted to small instances, or
we’re forced to settle for approximate, suboptimal, or heuristic
“solutions”	

A major goal of complexity theory is to delineate the
boundaries of what we can feasibly solve	

81	

NP	

The tip-of-the-iceberg in terms of problems conjectured not
to be in P, but a very important tip, because	

	
a) they’re very commonly encountered, probably because	

	
b) they arise naturally from basic “search” and
“optimization” questions.	

Definition: poly time verifiable, “guess and check”, “is there
a…” – all useful	

82	

NP-completeness	

Defn & Properties of ≤p	

A is NP-hard: everything in NP reducible to A	

A is NP-complete: NP-hard and in NP	

	
“the hardest problems in NP”	

	
“All alike under the skin”	

Most known natural problems in NP are complete	

	
#1: 3CNF-SAT	

	
Many others: Clique, VertexCover, HamPath, Circuit-SAT,…	

83	

84	

