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goals 

Design of Algorithms – a taste	

design methods	


common or important types of problems	

analysis of algorithms - efficiency	




goals 

Complexity & intractability – a taste	

solving problems in principle is not enough	


algorithms must be efficient	


some problems have no efficient solution	


NP-complete problems	

important & useful class of problems whose solutions 
(seemingly) cannot be found efficiently	
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complexity example 

Cryptography (e.g. RSA, SSL in browsers)	

Secret: p,q prime, say 512 bits each	

Public: n which equals p x q, 1024 bits	


In principle 	

there is an algorithm that given n will find p and q: ���
try all 2512 possible p’s, but an astronomical number	


In practice 	

no fast algorithm known for this problem (on non-quantum computers)	

security of RSA depends on this fact	


(and research in “quantum computing” is strongly driven 
by the possibility of changing this)	
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algorithms versus machines 

Moore’s Law and the exponential 
improvements in hardware...	


Ex: sparse linear equations over 25 years	


10 orders of magnitude improvement!	
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CDC 6600	
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Cray 3 (Est.)	
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Source: Sandia, via M. Schultz!

algorithms or hardware? 

25 years 
progress solving 
sparse linear 
systems	


Hardware ���
alone: 4 orders 
of magnitude	
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G.E. = Gaussian Elimination	
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G.E. / CDC 3600	


CDC 6600	


CDC 7600	


Cray 1	


Cray 2	


Cray 3 (Est.)	


Sparse G.E.	


Gauss-Seidel	


SOR	

CG	


1960	
 1970	
 1980	
 1990	
 2000	


Source: Sandia, via M. Schultz!

algorithms or hardware? 

25 years 
progress solving 
sparse linear 
systems	


Hardware ���
alone: 4 orders 
of magnitude	


Software alone: 
6 orders of 
magnitude	
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G.E. = Gaussian Elimination	

SOR = Successive OverRelaxation	

CG = Conjugate Gradient	




algorithms or hardware? 

The ���
N-Body ���
Problem:	


in 30 years���
  107 hardware���
  1010 software	
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Source: T.Quinn!
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algorithms: a definition 

Procedure to accomplish a task or solve a 
well-specified problem	


Well-specified: know what all possible inputs look 
like and what output looks like given them	


“accomplish” via simple, well-defined steps	


Ex: sorting names (via comparison)	


Ex: checking for primality (via +, -, *, /, ≤)	
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algorithms: a sample problem 

Printed circuit-board company has a robot 
arm that solders components to the board	


Time: proportional to total distance the arm 
must move from initial rest position around 
the board and back to the initial position	


For each board design, find best order to do 
the soldering	
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printed circuit board 
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printed circuit board 
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more precise problem definition 

Input: Given a set S of n points in the plane	

Output: The shortest cycle tour that visits 
each point in the set S.	


Better known as “TSP”	


How might you solve it?	
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nearest neighbor heuristic 

Start at some point p0	


Walk first to its ���
nearest neighbor p1	


Walk to the nearest 
unvisited neighbor p2, 
then nearest unvisited 
p3, … until all points 
have been visited	

Then walk back to p0	


heuristic:���
A rule of thumb, simplifica-
tion, or educated guess that 
reduces or limits the search 
for solutions in domains that 
are difficult and poorly 
understood.  May be good, but 
usually not guaranteed to give 
the best or fastest solution.	
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nearest neighbor heuristic 

p0!
p1!

p6!
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an input where nn works badly 

p0!

.9!1! 2!4! 8!16!

length ~ 84	
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an input where nn works badly 

p0!

.9!1! 2!4! 8!16!

optimal soln for this example���
length ~ 64	




Repeatedly join the closest pair of points	

(such that result can still be part of a ���
single loop in the end.  I.e., join ���
endpoints, but not points in middle, ���
of path segments already created.)	


How does this work on our bad example?	
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p0!

.9!1! 2!4! 8!16!

revised heuristic – closest pairs first 

?	
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a bad example for closest pair 

1!

1.5! 1.5!
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a bad example for closest pair 

1!

1.5! 1.5!

6+√10 = 9.16  !

vs !

8!
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something that works 

“Brute Force Search”:	

For each of the n! = n(n-1)(n-2)…1 orderings of the 
points, check the length of the cycle;	

Keep the best one	




22	


two notes 

The two incorrect algorithms were greedy	

Often very natural & tempting ideas	

They make choices that look great “locally” (and never 
reconsider them)	


When greed works, the algorithms are typically efficient	

BUT: often does not work - you get boxed in	


Our correct alg avoids this, but is incredibly slow	

20!  is so large that checking one billion per second would 
take 2.4 billion seconds (around 70 years!)	

And growing: n!  ~  √2 π n   •  (n/e)n   ~  2O(n log n)	
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the morals of the story 

Algorithms are important	

    Many performance gains outstrip Moore’s law	


Simple problems can be hard 	

Factoring, TSP, many others	


Simple ideas don’t always work 	

Nearest neighbor, closest pair heuristics	


Simple algorithms can be very slow	

Brute-force factoring, TSP	


A point we hope to make: for some problems, 
even the best algorithms are slow	




my plan 

A brief overview of the theory of algorithms	

	
Efficiency & asymptotic analysis	

	
Some scattered examples of simple 
problems where clever algorithms help	


A brief overview of the theory of intractability	

	
Especially NP-complete problems 	


“Basics every educated CSE student should 
know”	
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computational complexity 

The complexity of an algorithm associates a 
number T(n), the worst-case time the 
algorithm takes, with each problem size n.	


Mathematically,	

T: N+ → R+	


i.e.,T is a function mapping positive integers 
(problem sizes) to positive real numbers (number 
of steps).	




27	


Problem size !

Ti
m

e!

T(n)!

computational complexity 
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computational complexity: general goals 

Characterize growth rate of worst-case run time as a 
function of problem size, up to a constant factor	

Why not try to be more precise?	

	
Average-case, e.g., is hard to define, analyze	

Technological variations (computer, compiler, OS, …) 
easily 10x or more	

Being more precise is a ton of work	

A key question is “scale up”: if I can afford this today, how 
much longer will it take when my business is 2x larger?  
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.)	
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Problem size !

Ti
m

e!

T(n)!

computational complexity 

2n log2n!

n log2n!
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asymptotic analysis & big-O 

Given two functions f and g: N→R, f(n) is O(g(n)) iff 
	
∃ constant c > 0 so that f(n) is eventually always ≤ c g(n)	


Example:	


	
10n2-16n+100 is O(n2)  	
(and also O(n3)…)	


why?: 	


    10n2-16n+100 ≤ 11n2 for all n ≥ 10	
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polynomial vs exponential 

For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn).	


n100	

1.01n	


In short, every exponential 
grows faster than every 
polynomial!	
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the complexity class P: polynomial time 

P: Running time O(nd) for some constant d ���
	
(d is independent of the input size n)	


Nice scaling property: there is a constant c s.t. doubling 
n, time increases only by a factor of c. ���
	
(E.g., c ~ 2d)	


Contrast with exponential: For any constant c, 
there is a d such that n → n+d increases time 
by a factor of more than c. 	


	
(E.g., 2n vs 2n+1)	
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22n 

2n/10 

1000n2 

 

22n!

2n/10!

1000n2!

polynomial vs exponential growth 
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why it matters 

not only get very big, but do 
so abruptly, which likely yields 
erratic performance on small  
instances	




Next year's computer will be 2x faster.  If I can solve 
problem of size n0 today, how large a problem can I 
solve in the same time next year? 	
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Complexity Increase E.g. T=1012 

O(n) n0 → 2n0 1012 → 2  x 1012 

O(n2) n0 → √2 n0 106             → 1.4  x 106 

O(n3) n0 → 3√2 n0 104 → 1.25  x 104 

2n /10 n0 → n0+10 400 → 410 
2n n0 → n0 +1 40 → 41 

another view of poly vs exp 



complexity summary 

Typical initial goal for algorithm analysis is to 
find an 	


asymptotic 	
 	
 	
	

upper bound on 	
 	
 	
 	
	

worst case running time 	


as a function of problem size	


This is rarely the last word, but often helps 
separate good algorithms from blatantly 
poor ones - concentrate on the good ones!	
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why “polynomial”? 

Point is not that n2000 is a nice time bound, or that 
the differences among n and 2n and n2 are negligible.	


Rather, simple theoretical tools may not easily 
capture such differences, whereas exponentials are 
qualitatively different from polynomials, so more 
amenable to theoretical analysis.	


“My problem is in P” is a starting point for a more detailed 
analysis	


“My problem is not in P” may suggest that you need to 
shift to a more tractable variant, or otherwise readjust 
expectations	
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algorithm design techniques 

39	
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algorithm design techniques 

We will survey two:	

Later: Dynamic programming	

Orderly solution of many smaller sub-problems, typically 
non-disjoint	


Can give exponential speedups compared to more brute-
force approaches	


Today: Divide & Conquer	

Reduce problem to one or more sub-problems of the 
same type, typically disjoint	


Often gives significant, usually polynomial, speedup	
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algorithm design techniques 

Divide & Conquer	

Reduce problem to one or more sub-problems of 
the same type 	

Each sub-problem’s size a fraction of the original	


Subproblem’s typically disjoint	

Often gives significant, usually polynomial, speedup	

Examples:	


Mergesort, Binary Search, Strassen’s Algorithm, 
Quicksort (roughly)	




D&C in a 	

nutshell	


Suppose we've already invented DumbSort, 
taking time n2	


Try Just One Level of divide & conquer:	


DumbSort(first  n/2 elements) 	


DumbSort(last  n/2 elements)	


Merge results	


Time:  2 (n/2)2 + n = n2/2 + n << n2	


Almost twice as fast!	
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divide & conquer – the key idea 
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d&c approach, cont. 

Moral 1: “two halves are better than a whole”	

	
Two problems of half size are better than one full-size 
problem, even given O(n) overhead of recombining, since 
the base algorithm has super-linear complexity.	


Moral 2: “If a little's good, then more's better”	

	
Two levels of D&C would be almost 4 times faster, 3 levels 
almost 8, etc., even though overhead is growing. 	


    In the limit: you’ve just rediscovered mergesort.	
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mergesort (review) 

Mergesort: (recursively) sort 2 half-lists, then 
merge results.	


T(n) = 2T(n/2)+cn,  n≥2	

T(1) = 0	

Solution: O(n log n) ���

Lo
g 

n 
le

ve
ls
!

O(n) 
work 
per 
level!



 A Divide & Conquer Example: 
Closest Pair of Points 
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closest pair of points: non-geometric version 

Given n points and arbitrary distances between them, 
find the closest pair.  (E.g., think of distance as airfare 
– definitely not Euclidean distance!)	


Must look at all n choose 2 pairwise distances, else ���
any one you didn’t check might be the shortest.  	


Also true for Euclidean distance in 1-2 dimensions?	


(… and all the rest of the (n) edges…)	
2	
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closest pair of points: 1 dimensional version 

Given n points on the real line, find the closest pair	


Closest pair is adjacent in ordered list	

Time O(n log n) to sort, if needed	

Plus O(n) to scan adjacent pairs	


Key point: do not need to calc distances between all 
pairs: exploit geometry + ordering	
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closest pair of points. 2d, Euclidean distance:  1st try 

Divide.  Sub-divide region into 4 quadrants.	


L	
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closest pair of points:  1st try 

Divide.  Sub-divide region into 4 quadrants.	

Obstacle.  Impossible to ensure n/4 points in 

each piece.	


L	
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closest pair of points 

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	
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L	




closest pair of points 

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	


Conquer:  find closest pair on each side, recursively.	
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closest pair of points 

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	


Conquer:  find closest pair on each side, recursively.	


Combine:  find closest pair with one point in each side.	

Return best of 3 solutions.	
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seems ���
like ���
Θ(n2) ?	




closest pair of points 

Find closest pair with one point in each side, 
assuming that distance < δ.	
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δ = min(12, 21)	
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closest pair of points 

Find closest pair with one point in each side, 
assuming that distance < δ.	


Observation:  suffices to consider points within δ of line L.	
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δ = min(12, 21)	




closest pair of points 

Find closest pair with one point in each side, 
assuming that distance < δ.	


Observation:  suffices to consider points within δ of line L.	

Almost the one-D problem again: Sort points in 2δ-strip by 
their y coordinate.	
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closest pair of points 

Find closest pair with one point in each side, 
assuming that distance < δ.	


Observation:  suffices to consider points within δ of line L.	

Almost the one-D problem again: Sort points in 2δ-strip by 
their y coordinate. Only check pts within 8 in sorted list!	
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closest pair of points 

Def.  Let si be the point in the 
2δ-strip, with the ith smallest y-
coordinate.	


Claim.  If |i – j| > 8, then the 
distance between  si and sj ���
is > δ.	

Pf:  No two points lie in same ���
½δ-by-½δ box; only 8 boxes ���
within δ 	
 59	
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closest pair of points:  analysis 

Number of pairwise distance calculations:	


(A mostly superfluous detail: straightforward implementation 
gives a running time that is a factor of log n larger, due to 
sorting in the various subproblems.  Run time can be reduced 
to O(n log n) also, roughly by the trick of sorting by x at the 
top level, and returning/merging y-sorted lists from the 
subcalls.  	


Regardless of this nuance, the big picture is the same: divide-
and-conquer allows sharp speed gain over a naive n2 method.)	
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€ 

D(n) ≤
0 n =1

2D n /2( ) + 7n n >1
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⇒ D(n)  =  O(n logn)



Integer Multiplication 
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integer arithmetic 

Add.  Given two n-digit ���
integers a and b, ���
compute a + b.	

O(n) bit operations.	


Multiply.  Given two n-digit ���
integers a and b, ���
compute a × b. ���
The “grade school” method:  ���
Θ(n2) bit operations.	
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integer arithmetic 

Add.  Given two n-digit ���
integers a and b, ���
compute a + b.	

O(n) bit operations.	


Multiply.  Given two n-digit ���
integers a and b, ���
compute a × b. ���
The “grade school” method:  ���
Θ(n2) bit operations.	
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divide-and-conquer multiplication:  warmup 

To multiply two 2-digit integers:	

Multiply four 1-digit integers.	


Add, shift some 2-digit integers to obtain result.	


Same idea works for long integers –	


can split them into 4 half-sized ints	
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€ 

x = 10⋅ x1  +  x0
y = 10⋅ y1  +  y0

xy = 10⋅ x1 + x0( ) 10⋅ y1  + y0( )
= 100 ⋅ x1y1  + 10⋅ x1y0 + x0y1( ) + x0y0
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x1  x0	
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divide-and-conquer multiplication:  warmup 

To multiply two n-digit integers:	

Multiply four n/2-digit integers.	


Add, shift some n/2-digit integers to obtain result.	
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€ 

T(n)  =  4T n /2( )
recursive calls
     

 +  Θ(n)
add, shift
    ⇒  T(n) =Θ(n2 )

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( )
= 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0y1( ) + x0y0

assumes n is a power of 2	
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key trick: 2 multiplies for the price of 1 
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€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( )
= 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0y1( ) + x0y0

€ 

α = x1  +  x0

β = y1  +  y0

αβ = x1 + x0( ) y1  + y0( )
= x1y1  + x1y0 + x0y1( ) + x0y0

x1y0 + x0y1( ) = αβ − x1y1 − x0y0

Well, ok, 4 for 3 is 
more accurate…	




Karatsuba multiplication 

To multiply two n-digit integers:	

Add two ½n digit integers.	

Multiply three ½n-digit integers.	


Add, subtract, and shift ½n-digit integers to obtain result.	


Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-
digit integers in O(n1.585) bit ops.	
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€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

= 2n ⋅ x1y1  + 2n / 2 ⋅ (x1 + x0 ) (y1 + y0 )  − x1y1 − x0 y0( ) + x0 y0

  

€ 

T(n) ≤ 3T n /2( )
recursive calls
     + O(n)

add, subtract, shift
     

⇒ T(n)  =  O(n log 2 3 )  =  O(n1.585 )

A	
 B	
 C	
A	
 C	




multiplication – the bottom line 

Naïve: 	
 	
Θ(n2)	

Karatsuba: 	
Θ(n1.59…)	

Amusing exercise: generalize Karatsuba to do 

5 size n/3 subproblems → Θ(n1.46…)	

Best known: 	
Θ(n log n loglog n)	


"Fast Fourier Transform"	

but mostly unused in practice (unless you need 
really big numbers - a billion digits of π, say)	


High precision arithmetic IS important for 
crypto	
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d & c summary 

Idea:	

“Two halves are better than a whole”	


if the base algorithm has super-linear complexity.	


“If a little's good, then more's better”	

repeat above, recursively	


Applications: Many.  	

Binary Search, Merge Sort, (Quicksort), Closest 
points, Integer multiply,…	
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