
1	

Algorithms and Computational
Complexity: an Overview

Winter 2011	

Larry Ruzzo	

Thanks to Paul Beame, James Lee, Kevin Wayne for some slides	

2	

goals

Design of Algorithms – a taste	

design methods	

common or important types of problems	

analysis of algorithms - efficiency	

goals

Complexity & intractability – a taste	

solving problems in principle is not enough	

algorithms must be efficient	

some problems have no efficient solution	

NP-complete problems	

important & useful class of problems whose solutions
(seemingly) cannot be found efficiently	

3	

4	

complexity example

Cryptography (e.g. RSA, SSL in browsers)	

Secret: p,q prime, say 512 bits each	

Public: n which equals p x q, 1024 bits	

In principle 	

there is an algorithm that given n will find p and q: ���
try all 2512 possible p’s, but an astronomical number	

In practice 	

no fast algorithm known for this problem (on non-quantum computers)	

security of RSA depends on this fact	

(and research in “quantum computing” is strongly driven
by the possibility of changing this)	

5	

algorithms versus machines

Moore’s Law and the exponential
improvements in hardware...	

Ex: sparse linear equations over 25 years	

10 orders of magnitude improvement!	

107	

106	

105	

104	

103	

102	

101	

100	

Se
co

nd
s	

G.E. / CDC 3600	

CDC 6600	

CDC 7600	

Cray 1	

Cray 2	

Cray 3 (Est.)	

1960	
 1970	
 1980	
 1990	
 2000	

Source: Sandia, via M. Schultz!

algorithms or hardware?

25 years
progress solving
sparse linear
systems	

Hardware ���
alone: 4 orders
of magnitude	

6	

G.E. = Gaussian Elimination	

107	

106	

105	

104	

103	

102	

101	

100	

Se
co

nd
s	

G.E. / CDC 3600	

CDC 6600	

CDC 7600	

Cray 1	

Cray 2	

Cray 3 (Est.)	

Sparse G.E.	

Gauss-Seidel	

SOR	

CG	

1960	
 1970	
 1980	
 1990	
 2000	

Source: Sandia, via M. Schultz!

algorithms or hardware?

25 years
progress solving
sparse linear
systems	

Hardware ���
alone: 4 orders
of magnitude	

Software alone:
6 orders of
magnitude	

7	

G.E. = Gaussian Elimination	

SOR = Successive OverRelaxation	

CG = Conjugate Gradient	

algorithms or hardware?

The ���
N-Body ���
Problem:	

in 30 years���
 107 hardware���
 1010 software	

8	

Source: T.Quinn!

9	

algorithms: a definition

Procedure to accomplish a task or solve a
well-specified problem	

Well-specified: know what all possible inputs look
like and what output looks like given them	

“accomplish” via simple, well-defined steps	

Ex: sorting names (via comparison)	

Ex: checking for primality (via +, -, *, /, ≤)	

10	

algorithms: a sample problem

Printed circuit-board company has a robot
arm that solders components to the board	

Time: proportional to total distance the arm
must move from initial rest position around
the board and back to the initial position	

For each board design, find best order to do
the soldering	

11	

printed circuit board

12	

printed circuit board

13	

more precise problem definition

Input: Given a set S of n points in the plane	

Output: The shortest cycle tour that visits
each point in the set S.	

Better known as “TSP”	

How might you solve it?	

14	

nearest neighbor heuristic

Start at some point p0	

Walk first to its ���
nearest neighbor p1	

Walk to the nearest
unvisited neighbor p2,
then nearest unvisited
p3, … until all points
have been visited	

Then walk back to p0	

heuristic:���
A rule of thumb, simplifica-
tion, or educated guess that
reduces or limits the search
for solutions in domains that
are difficult and poorly
understood. May be good, but
usually not guaranteed to give
the best or fastest solution.	

15	

nearest neighbor heuristic

p0!
p1!

p6!

16	

an input where nn works badly

p0!

.9!1! 2!4! 8!16!

length ~ 84	

17	

an input where nn works badly

p0!

.9!1! 2!4! 8!16!

optimal soln for this example���
length ~ 64	

Repeatedly join the closest pair of points	

(such that result can still be part of a ���
single loop in the end. I.e., join ���
endpoints, but not points in middle, ���
of path segments already created.)	

How does this work on our bad example?	

18	
p0!

.9!1! 2!4! 8!16!

revised heuristic – closest pairs first

?	

19	

a bad example for closest pair

1!

1.5! 1.5!

20	

a bad example for closest pair

1!

1.5! 1.5!

6+√10 = 9.16 !

vs !

8!

21	

something that works

“Brute Force Search”:	

For each of the n! = n(n-1)(n-2)…1 orderings of the
points, check the length of the cycle;	

Keep the best one	

22	

two notes

The two incorrect algorithms were greedy	

Often very natural & tempting ideas	

They make choices that look great “locally” (and never
reconsider them)	

When greed works, the algorithms are typically efficient	

BUT: often does not work - you get boxed in	

Our correct alg avoids this, but is incredibly slow	

20! is so large that checking one billion per second would
take 2.4 billion seconds (around 70 years!)	

And growing: n! ~ √2 π n • (n/e)n ~ 2O(n log n)	

23	

the morals of the story

Algorithms are important	

 Many performance gains outstrip Moore’s law	

Simple problems can be hard 	

Factoring, TSP, many others	

Simple ideas don’t always work 	

Nearest neighbor, closest pair heuristics	

Simple algorithms can be very slow	

Brute-force factoring, TSP	

A point we hope to make: for some problems,
even the best algorithms are slow	

my plan

A brief overview of the theory of algorithms	

	
Efficiency & asymptotic analysis	

	
Some scattered examples of simple
problems where clever algorithms help	

A brief overview of the theory of intractability	

	
Especially NP-complete problems 	

“Basics every educated CSE student should
know”	

24	

26	

computational complexity

The complexity of an algorithm associates a
number T(n), the worst-case time the
algorithm takes, with each problem size n.	

Mathematically,	

T: N+ → R+	

i.e.,T is a function mapping positive integers
(problem sizes) to positive real numbers (number
of steps).	

27	

Problem size !

Ti
m

e!

T(n)!

computational complexity

28	

computational complexity: general goals

Characterize growth rate of worst-case run time as a
function of problem size, up to a constant factor	

Why not try to be more precise?	

	
Average-case, e.g., is hard to define, analyze	

Technological variations (computer, compiler, OS, …)
easily 10x or more	

Being more precise is a ton of work	

A key question is “scale up”: if I can afford this today, how
much longer will it take when my business is 2x larger?
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.)	

29	

Problem size !

Ti
m

e!

T(n)!

computational complexity

2n log2n!

n log2n!

30	

asymptotic analysis & big-O

Given two functions f and g: N→R, f(n) is O(g(n)) iff
	
∃ constant c > 0 so that f(n) is eventually always ≤ c g(n)	

Example:	

	
10n2-16n+100 is O(n2) 	
(and also O(n3)…)	

why?: 	

 10n2-16n+100 ≤ 11n2 for all n ≥ 10	

31	

polynomial vs exponential

For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn).	

n100	

1.01n	

In short, every exponential
grows faster than every
polynomial!	

32	

the complexity class P: polynomial time

P: Running time O(nd) for some constant d ���
	
(d is independent of the input size n)	

Nice scaling property: there is a constant c s.t. doubling
n, time increases only by a factor of c. ���
	
(E.g., c ~ 2d)	

Contrast with exponential: For any constant c,
there is a d such that n → n+d increases time
by a factor of more than c. 	

	
(E.g., 2n vs 2n+1)	

33	

22n

2n/10

1000n2

22n!

2n/10!

1000n2!

polynomial vs exponential growth

34	

why it matters

not only get very big, but do
so abruptly, which likely yields
erratic performance on small
instances	

Next year's computer will be 2x faster. If I can solve
problem of size n0 today, how large a problem can I
solve in the same time next year? 	

35	

Complexity Increase E.g. T=1012

O(n) n0 → 2n0 1012 → 2 x 1012

O(n2) n0 → √2 n0 106 → 1.4 x 106

O(n3) n0 → 3√2 n0 104 → 1.25 x 104

2n /10 n0 → n0+10 400 → 410
2n n0 → n0 +1 40 → 41

another view of poly vs exp

complexity summary

Typical initial goal for algorithm analysis is to
find an 	

asymptotic 	
 	
 	
	

upper bound on 	
 	
 	
 	
	

worst case running time 	

as a function of problem size	

This is rarely the last word, but often helps
separate good algorithms from blatantly
poor ones - concentrate on the good ones!	

36	

why “polynomial”?

Point is not that n2000 is a nice time bound, or that
the differences among n and 2n and n2 are negligible.	

Rather, simple theoretical tools may not easily
capture such differences, whereas exponentials are
qualitatively different from polynomials, so more
amenable to theoretical analysis.	

“My problem is in P” is a starting point for a more detailed
analysis	

“My problem is not in P” may suggest that you need to
shift to a more tractable variant, or otherwise readjust
expectations	

37	

algorithm design techniques

39	

40	

algorithm design techniques

We will survey two:	

Later: Dynamic programming	

Orderly solution of many smaller sub-problems, typically
non-disjoint	

Can give exponential speedups compared to more brute-
force approaches	

Today: Divide & Conquer	

Reduce problem to one or more sub-problems of the
same type, typically disjoint	

Often gives significant, usually polynomial, speedup	

41	

algorithm design techniques

Divide & Conquer	

Reduce problem to one or more sub-problems of
the same type 	

Each sub-problem’s size a fraction of the original	

Subproblem’s typically disjoint	

Often gives significant, usually polynomial, speedup	

Examples:	

Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (roughly)	

D&C in a 	

nutshell	

Suppose we've already invented DumbSort,
taking time n2	

Try Just One Level of divide & conquer:	

DumbSort(first n/2 elements) 	

DumbSort(last n/2 elements)	

Merge results	

Time: 2 (n/2)2 + n = n2/2 + n << n2	

Almost twice as fast!	

42	

divide & conquer – the key idea

43	

d&c approach, cont.

Moral 1: “two halves are better than a whole”	

	
Two problems of half size are better than one full-size
problem, even given O(n) overhead of recombining, since
the base algorithm has super-linear complexity.	

Moral 2: “If a little's good, then more's better”	

	
Two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing. 	

 In the limit: you’ve just rediscovered mergesort.	

44	

mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then
merge results.	

T(n) = 2T(n/2)+cn, n≥2	

T(1) = 0	

Solution: O(n log n) ���

Lo
g

n
le

ve
ls
!

O(n) 
work 
per 
level!

 A Divide & Conquer Example:
Closest Pair of Points

46	

closest pair of points: non-geometric version

Given n points and arbitrary distances between them,
find the closest pair. (E.g., think of distance as airfare
– definitely not Euclidean distance!)	

Must look at all n choose 2 pairwise distances, else ���
any one you didn’t check might be the shortest. 	

Also true for Euclidean distance in 1-2 dimensions?	

(… and all the rest of the (n) edges…)	
2	

47	

closest pair of points: 1 dimensional version

Given n points on the real line, find the closest pair	

Closest pair is adjacent in ordered list	

Time O(n log n) to sort, if needed	

Plus O(n) to scan adjacent pairs	

Key point: do not need to calc distances between all
pairs: exploit geometry + ordering	

48	

closest pair of points. 2d, Euclidean distance: 1st try

Divide. Sub-divide region into 4 quadrants.	

L	

50	

closest pair of points: 1st try

Divide. Sub-divide region into 4 quadrants.	

Obstacle. Impossible to ensure n/4 points in

each piece.	

L	

51	

closest pair of points

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	

52	

L	

closest pair of points

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	

Conquer: find closest pair on each side, recursively.	

53	

12	

21	

L	

closest pair of points

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	

Conquer: find closest pair on each side, recursively.	

Combine: find closest pair with one point in each side.	

Return best of 3 solutions.	

54	

12	

21	

8	

L	

seems ���
like ���
Θ(n2) ?	

closest pair of points

Find closest pair with one point in each side,
assuming that distance < δ.	

55	

12	

21	

δ = min(12, 21)	

L	

closest pair of points

Find closest pair with one point in each side,
assuming that distance < δ.	

Observation: suffices to consider points within δ of line L.	

56	

12	

21	

δ	

L	

δ = min(12, 21)	

closest pair of points

Find closest pair with one point in each side,
assuming that distance < δ.	

Observation: suffices to consider points within δ of line L.	

Almost the one-D problem again: Sort points in 2δ-strip by
their y coordinate.	

57	

12	

21	

1	

2	

3	

4	
 5	

6	

7	

δ	

L	

δ = min(12, 21)	

closest pair of points

Find closest pair with one point in each side,
assuming that distance < δ.	

Observation: suffices to consider points within δ of line L.	

Almost the one-D problem again: Sort points in 2δ-strip by
their y coordinate. Only check pts within 8 in sorted list!	

58	

12	

21	

1	

2	

3	

4	
 5	

6	

7	

δ	

L	

δ = min(12, 21)	

closest pair of points

Def. Let si be the point in the
2δ-strip, with the ith smallest y-
coordinate.	

Claim. If |i – j| > 8, then the
distance between si and sj ���
is > δ.	

Pf: No two points lie in same ���
½δ-by-½δ box; only 8 boxes ���
within δ 	
 59	

δ	

29	

30	

31	

28	

26	

25	

δ	

½δ	

½δ	

39	

i	

j	

27	

closest pair of points: analysis

Number of pairwise distance calculations:	

(A mostly superfluous detail: straightforward implementation
gives a running time that is a factor of log n larger, due to
sorting in the various subproblems. Run time can be reduced
to O(n log n) also, roughly by the trick of sorting by x at the
top level, and returning/merging y-sorted lists from the
subcalls. 	

Regardless of this nuance, the big picture is the same: divide-
and-conquer allows sharp speed gain over a naive n2 method.)	

61	

€

D(n) ≤
0 n =1

2D n /2() + 7n n >1
⎧
⎨
⎩

⎫
⎬
⎭

⇒ D(n) = O(n logn)

Integer Multiplication

63	

integer arithmetic

Add. Given two n-digit ���
integers a and b, ���
compute a + b.	

O(n) bit operations.	

Multiply. Given two n-digit ���
integers a and b, ���
compute a × b. ���
The “grade school” method: ���
Θ(n2) bit operations.	

64	

1

0	
1	
1 1	

1	
1	
0 1	
+

0	
1	
0 1	

1	
1	
1

0	
1	
0 1	

0	
1	
1 1	

1	
0	
0 0	

1	
0	
1 1	
1

Add	

1	

1	

0	

0	

1	

1	

1	

0	

0	

1	

1	

1	

1	

0	

0	

1	

1	

1	

1	

0	

1	

0	

1	

0	
0	
0	
0	
0	
0	
0	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
1	
0	
1	
1	

1	

0	

1	

1	

1	

1	

1	

0	

*	

Multiply	

0	
0	
0	
0	
0	
0	
0	
0	

integer arithmetic

Add. Given two n-digit ���
integers a and b, ���
compute a + b.	

O(n) bit operations.	

Multiply. Given two n-digit ���
integers a and b, ���
compute a × b. ���
The “grade school” method: ���
Θ(n2) bit operations.	

65	

1

0	
1	
1 1	

1	
1	
0 1	
+

0	
1	
0 1	

1	
1	
1

0	
1	
0 1	

0	
1	
1 1	

1	
0	
0 0	

1	
0	
1 1	
1

Add	

1	

1	

0	

0	

1	

1	

1	

0	

0	

1	

1	

1	

1	

0	

0	

1	

1	

1	

1	

0	

1	

0	

1	

0	
0	
0	
0	
0	
0	
0	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
1	
0	
1	
1	

1	

0	

1	

1	

1	

1	

1	

0	

*	

Multiply	

0	
0	
0	
0	
0	
0	
0	
0	

divide-and-conquer multiplication: warmup

To multiply two 2-digit integers:	

Multiply four 1-digit integers.	

Add, shift some 2-digit integers to obtain result.	

Same idea works for long integers –	

can split them into 4 half-sized ints	

66	

€

x = 10⋅ x1 + x0
y = 10⋅ y1 + y0

xy = 10⋅ x1 + x0() 10⋅ y1 + y0()
= 100 ⋅ x1y1 + 10⋅ x1y0 + x0y1() + x0y0

5	

2	

4	

3	

0	
4	
4	
1	

0	
1	

8	
0	

5	
1	

2	
1	

x0⋅y0	

x0⋅y1	

x1⋅y0	

x1⋅y1	

x1 x0	

y1 y0	

divide-and-conquer multiplication: warmup

To multiply two n-digit integers:	

Multiply four n/2-digit integers.	

Add, shift some n/2-digit integers to obtain result.	

67	

€

T(n) = 4T n /2()
recursive calls

 + Θ(n)
add, shift
 ⇒ T(n) =Θ(n2)

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0()
= 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0y1() + x0y0

assumes n is a power of 2	

1	

1	

0	

0	

1	

1	

0	

1	

1	

1	

0	

1	

1	

1	

1	

0	

1	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
1	
0	
1	
1	
0	

*	

1	
0	
0	
0	
0	
0	
1	
0	

1	
0	
0	
1	
0	
1	
0	
1	

1	
1	
0	
0	
0	
1	
0	
0	

1	
1	
0	
1	
1	
0	
1	
0	

x0⋅y0	

x0⋅y1	

x1⋅y0	

x1⋅y1	

x1 x0	

y1 y0	

key trick: 2 multiplies for the price of 1

68	

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0()
= 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0y1() + x0y0

€

α = x1 + x0

β = y1 + y0

αβ = x1 + x0() y1 + y0()
= x1y1 + x1y0 + x0y1() + x0y0

x1y0 + x0y1() = αβ − x1y1 − x0y0

Well, ok, 4 for 3 is
more accurate…	

Karatsuba multiplication

To multiply two n-digit integers:	

Add two ½n digit integers.	

Multiply three ½n-digit integers.	

Add, subtract, and shift ½n-digit integers to obtain result.	

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-
digit integers in O(n1.585) bit ops.	

69	

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

= 2n ⋅ x1y1 + 2n / 2 ⋅ (x1 + x0) (y1 + y0) − x1y1 − x0 y0() + x0 y0

€

T(n) ≤ 3T n /2()
recursive calls
 + O(n)

add, subtract, shift

⇒ T(n) = O(n log 2 3) = O(n1.585)

A	
 B	
 C	
A	
 C	

multiplication – the bottom line

Naïve: 	
 	
Θ(n2)	

Karatsuba: 	
Θ(n1.59…)	

Amusing exercise: generalize Karatsuba to do

5 size n/3 subproblems → Θ(n1.46…)	

Best known: 	
Θ(n log n loglog n)	

"Fast Fourier Transform"	

but mostly unused in practice (unless you need
really big numbers - a billion digits of π, say)	

High precision arithmetic IS important for
crypto	

71	

d & c summary

Idea:	

“Two halves are better than a whole”	

if the base algorithm has super-linear complexity.	

“If a little's good, then more's better”	

repeat above, recursively	

Applications: Many. 	

Binary Search, Merge Sort, (Quicksort), Closest
points, Integer multiply,…	

73	

